Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
ОСиС.doc
Скачиваний:
13
Добавлен:
25.08.2019
Размер:
1.59 Mб
Скачать

9.2.5 Иерархия памяти

Все предыдущие рассуждения справедливы и для других пар запоминающих устройств, например, для оперативной памяти и внешней памяти. В этом случае уменьшается среднее время доступа к данным, расположенным на диске, и роль кэш-памяти выполняет буфер в оперативной памяти.

Рассмотренная нами схема трехуровневой памяти (ассоциативная, основная, вторичная) является частным случаем многоуровневой памяти. Например, как показано на рис. 9.5, разновидности памяти могут быть организованы в иерархию по убыванию скорости доступа и возрастанию цены. 

.

                                    Рис. 9.5  Иерархия памяти компьютера

Считается, что затраты, связанные с переписью информации из одной памяти в другую окажутся меньше выигрыша в быстродействии, который получается за счет сокращения времени выборки из более быстрых слоев памяти. Информация о странице, которая находится в памяти верхнего уровня, хранится также на уровнях с большими номерами. Если процессор не обнаруживает нужную страницу на i-м уровне, он начинает искать ее на  последующих уровнях. Когда нужная страница найдена, она переносится в более быстрые уровни. При этом происходит вытеснение какой-то старой страницы, обычно той, которая дольше всего не использовалась. Идея состоит в том, чтобы те страницы, которые чаще всего нужны в настоящее время, находились в более быстрых частях памяти. Эффективность такой схемы обусловлена все тем же свойством локальности (подробнее о локальности и связанным с ним понятием рабочего множества страниц будет рассказано в следующей главе). В результате среднее время доступа для многоуровневой схемы памяти оказывается весьма близким ко времени доступа первого уровня.

9.2.6 Размер страницы

Дизайнеры ОС для существующих машин редко имеют возможность влиять на размер страницы.  Однако для вновь создаваемых компьютеров решение относительно оптимального размера страницы является актуальным. Как и можно было ожидать нет одного наилучшего размера. Скорее есть набор факторов, влияющих на размер. Обычно размер страницы это степень двойки от 2**9 до 2**14 байт.

Чем больше размер страницы, тем меньше будет размер структур данных, обслуживающих преобразование адресов, но тем больше будут потери, связанные с тем, что память можно выделять только постранично.

Как следует выбирать размер страницы?  Во-первых, нужно учитывать размер таблицы страниц,  здесь желателен большой размер страницы (страниц меньше, соответственно и таблица страниц меньше).  С другой стороны память лучше утилизируется с маленьким размером страницы. В среднем половина последней страницы процесса пропадает. Необходимо также учитывать объем ввода-вывода для взаимодействия с внешней памятью и другие факторы. Проблема не имеет хорошего ответа.  Историческая тенденция состоит в увеличении размера страницы. Как правило, размер страниц задается аппаратно, например, на Intel - это 4096 байт (или 4 Кбайт), на DEC PDP-11 - 8 Кбайт, на DEC VAX - 512 байт, на других архитектурах, таких как Motorola 68030, размер страниц может быть задан программно.

Итак, нами рассмотрены аппаратные особенности поддержки виртуальной памяти. Перейдем к ее программной поддержке.