
- •Глава 1. Введение в теорию операционных систем
- •1.1 Что такое операционная система.
- •1.1.1 Структура вычислительной системы
- •1.1.2 Что такое ос
- •1.2 Краткая история эволюции вычислительных систем
- •1.3 Основные понятия, концепции ос.
- •1.4 Архитектурные особенности ос.
- •1.4.1 Монолитное ядро
- •1.4.2 Слоеные системы (Layered systems)
- •1.4.3 Виртуальные машины
- •1.4.4 Микроядерная архитектура.
- •1.4.5 Смешанные системы
- •1.5 Классификация ос
- •1.6 Резюме
- •Глава II. Процессы и их поддержка в операционной системе
- •2.1. Понятие процесса
- •2.2. Состояния процесса
- •2.3. Операции над процессами и связанные с ними понятия
- •2.3.1. Набор операций
- •2.3.2. Process Control Block и контекст процесса
- •2.3.3. Одноразовые операции
- •2.3.4. Многоразовые операции
- •2.3.5. Переключение контекста
- •2.4. Резюме
- •Глава 3. Планирование процессов
- •3.1. Уровни планирования
- •3.2. Критерии планирования и требования к алгоритмам
- •3.3. Параметры планирования
- •3.4. Вытесняющее и невытесняющее планирование
- •3.5. Алгоритмы планирования
- •3.5.4. Гарантированное планирование
- •3.5.5. Приоритетное планирование
- •3.5.6. Многоуровневые очереди (Multilevel Queue)
- •3.5.7. Многоуровневые очереди с обратной связью (Multilevel Feedback Queue)
- •3.6. Резюме
- •Глава 4. Кооперация процессов и основные аспекты ее логической организации
- •4.1. Взаимодействующие процессы
- •4.2. Категории средств обмена информацией
- •4.3. Логическая организация механизма передачи информации
- •4.3.1. Как устанавливается связь?
- •4.3.2. Информационная валентность процессов и средств связи
- •4.3.3. Особенности передачи информации с помощью линий связи
- •4.3.3.1 Буферизация
- •4.3.3.2. Поток ввода/вывода и сообщения
- •4.3.4. Надежность средств связи
- •4.3.5. Как завершается связь?
- •4.4. Нити исполнения
- •4.5. Резюме
- •Глава 5. Алгоритмы синхронизации
- •5.1. Interleaving, race condition и взаимоисключения
- •5.2. Критическая секция
- •5.3. Программные алгоритмы организации взаимодействия процессов 5.3.1. Требования, предъявляемые к алгоритмам
- •5.3.2. Запрет прерываний
- •5.3.3. Переменная-замок
- •5.3.4. Строгое чередование
- •5.3.5. Флаги готовности
- •5.3.6. Алгоритм Петерсона
- •5.3.7. Алгоритм булочной (Bakery algorithm)
- •5.4. Аппаратная поддержка взаимоисключений
- •5.4.1. Команда Test-and-Set (Проверить и присвоить 1)
- •5.4.2. Команда Swap (Обменять значения)
- •5.5. Резюме
- •Глава 6. Механизмы синхронизации
- •6.1. Семафоры
- •6.1.1. Концепция семафоров
- •6.1.2. Решение проблемы producer-consumer с помощью семафоров
- •6.2. Мониторы
- •6.3. Сообщения
- •6.4. Эквивалентность семафоров, мониторов и сообщений
- •6.4.1. Реализация мониторов и передачи сообщений с помощью семафоров
- •6.4.2. Реализация семафоров и передачи сообщений с помощью мониторов
- •6.4.3. Реализация семафоров и мониторов с помощью очередей сообщений
- •6.5. Резюме
- •Глава 7. Тупики
- •7.1 Введение
- •7.2 Концепция ресурса
- •7.3 Условия возникновения тупиков
- •7.4 Основные направления борьбы с тупиками.
- •7.5 Алгоритм страуса
- •7.6 Обнаружение тупиков
- •7.7 Восстановление после тупиков
- •7.7.1 Восстановление при помощи перераспределения ресурсов
- •7.7.2 Восстановление через откат назад
- •7.7.3 Восстановление через ликвидацию одного из процессов
- •7.8 Способы предотвращения тупиков путем тщательного распределения ресурсов.
- •7.8.1 Предотвращение тупиков и алгоритм банкира.
- •7.8.2 Недостатки алгоритма банкира
- •7.9 Предотвращение тупиков за счет нарушения условий возникновения тупиков.
- •7.9.1 Нарушение условия взаимоисключения
- •7.9.2 Hарушение условия ожидания дополнительных ресурсов
- •7.9.3 Нарушение принципа неперераспределяемости.
- •7.9.4 Нарушение условия кругового ожидания
- •7.10 Родственные проблемы
- •7.10.1 Двухфазная локализация
- •7.10.2 Тупики не ресурсного типа
- •7.10.3 Голод (starvation)
- •7.11 Заключение.
- •Глава 8. Введение. Простейшие схемы управления памятью.
- •8.1 Введение.
- •8.2 Связывание адресов.
- •8.3 Простейшие схемы управления памятью.
- •8.3.1 Схема с фиксированными разделами.
- •8.3.2 Свопинг
- •8.3.3 Мультипрограммирование с переменными разделами.
- •8.4 Резюме
- •9.1 Проблема размещения больших программ. Понятие виртуальной памяти.
- •9.2 Архитектурные средства поддержки виртуальной памяти.
- •9.2.1 Страничная память
- •9.2.2 Сегментная и сегментно-страничная организации памяти
- •9.2.3 Таблица страниц
- •9.2.4 Ассоциативная память.
- •9.2.5 Иерархия памяти
- •9.2.6 Размер страницы
- •Глава 10. Аппаратно-независимый уровень управления виртуальной памятью
- •10.1 Исключительные ситуации при работе с памятью.
- •10.2 Стратегии управления страничной памятью
- •10.3 Алгоритмы замещения страниц
- •10.3.1 Fifo алгоритм. Выталкивание первой пришедшей страницы.
- •10.3.2 Оптимальный алгоритм
- •10.3.3 Выталкивание дольше всего не использовавшейся страницы. Lru (The Least Recently Used) Algorithm .
- •10.3.4 Выталкивание редко используемой страницы. Nfu (Not Frequently Used) алгоритм.
- •10.3.5 Другие алгоритмы
- •10.4. Thrashing. Свойство локальности. Модель рабочего множества.
- •10.5 Демоны пейджинга
- •10.6 Аппаратно-независимая модель памяти процесса.
- •10.6.1 Структуры данных, используемые для описания сегментной модели
- •10.7 Отдельные аспекты функционирования менеджера памяти.
- •10.8 Заключение
- •Глава 11. Файловые системы. Файлы с точки зрения пользователя
- •11.1 Введение
- •11.2 Имена файлов
- •11.3 Структура файлов
- •11.4 Типы и атрибуты файлов
- •11.5 Доступ к файлам
- •11.6 Операции над файлами.
- •11.7 Директории. Логическая структура файлового архива.
- •11.8 Операции над директориями
- •11.9 Защита файлов.
- •11.9.1 Контроль доступа к файлам
- •11.9.2 Списки прав доступа
- •11.10 Резюме
- •Глава 12. Реализация файловой системы
- •12.1 Интерфейс файловой системы.
- •12.2 Общая структура файловой системы
- •12.3 Структура файловой системы на диске.
- •12.3.1 Методы выделения дискового пространства
- •12.3.2 Управление свободным и занятым дисковым пространством.
- •12.3.3 Размер блока
- •12.3.4 Структура файловой системы на диске
- •12.4 Реализация директорий
- •12.4.1 Примеры реализация директорий в некоторых ос
- •12.4.2 Поиск в директории
- •12.5 Монтирование файловых систем.
- •12.6 Связывание файлов.
- •12.6.1 Организация связи между каталогом и разделяемым файлом
- •12.7 Кооперация процессов при работе с файлами.
- •12.8 Надежность файловой системы.
- •12.8.1 Целостность файловой системы.
- •12.8.2 Управление плохими блоками.
- •12.9 Производительность файловой системы
- •12.10 Реализация некоторых операций над файлами.
- •12.10.1 Системные вызовы, работающие с символическим именем файла.
- •12.10.2 Системные вызовы, работающие с файловым дескриптором
- •12.11 Современные архитектуры файловых систем
- •12.12 Резюме
- •Глава 13. Система управления вводом-выводом
- •13.1 Физические принципы организации ввода-вывода.
- •13.1.1. Общие сведения об архитектуре компьютера.
- •13.1.2. Структура контроллера устройства.
- •13.1.3. Опрос устройств и прерывания. Исключительные ситуации и системные вызовы
- •13.1.4. Прямой доступ к памяти (Direct Memory Access – dma).
- •13.2. Логические принципы организации ввода-вывода.
- •13.2.1. Структура системы ввода-вывода.
- •13.2.2. Систематизация внешних устройств и интерфейс между базовой подсистемой ввода-вывода и драйверами.
- •13.2.3. Функции базовой подсистемы ввода-вывода.
- •13.2.3.1. Блокирующиеся, не блокирующиеся и асинхронные системные вызовы.
- •13.2.3.2. Буферизация и кэширование.
- •13.2.3.3. Spooling и захват устройств.
- •13.2.3.4. Обработка прерываний и ошибок.
- •13.2.3.5. Планирование запросов.
- •13.2.4. Алгоритмы планирования запросов к жесткому диску.
- •13.2.4.1. Строение жесткого диска и параметры планирования.
- •13.2.4.2. Алгоритм First Come First Served (fcfs)
- •13.2.4.3. Алгоритм Short Seek Time First (sstf).
- •13.2.4.4. Алгоритмы сканирования (scan, c-scan, look, c-look)
- •13.3. Резюме.
- •Глава 14. Сети и сетевые операционные системы
- •Глава 15. Основные понятия информационной безопасности.
- •15.1 Введение
- •15.2 Классификация угроз
- •15.3 Формализация подхода к обеспечению информационной безопасности. Классы безопасности
- •15.4 Политика безопасности
- •15.5 Криптография, как одна из базовых технологий безопасности ос.
- •Глава 16. Защитные механизмы операционных систем.
- •16.1 Идентификация и аутентификация
- •16.1.1 Пароли, уязвимость паролей
- •16.2 Авторизация. Разграничение доступа к объектам ос
- •16.2.1 Домены безопасности
- •16.2.2 Матрица доступа
- •16.2.3 Недопустимость повторного использование объектов
- •16.3 Аудит, учет использования системы защиты
- •16.4 Анализ некоторых популярных ос с точки зрения их защищенности.
- •16.5 Резюме
- •Литература
1.4.3 Виртуальные машины
В начале лекции мы говорили о взгляде на операционную систему как на виртуальную машину, когда пользователю нет необходимости знать детали внутреннего устройства компьютера. Он работает с файлами, а не с магнитными головками и двигателем; он работает с огромной виртуальной, а не ограниченной реальной оперативной памятью; его мало волнует, единственный он на машине пользователь или нет. Рассмотрим несколько другой подход. Пусть операционная система реализует виртуальную машину для каждого пользователя, но, не упрощая ему жизнь, а, наоборот, усложняя. Каждая такая виртуальная машина предстает перед пользователем как абсолютно голое аппаратное обеспечение – виртуальная копия всего аппаратного обеспечения, реально присутствующего в вычислительной системе, включая процессор, привилегированные и непривилегированные команды, устройства ввода-вывода, прерывания и т.д. При таком подходе пользователь имеет возможность запустить другую, вторую операционную систему с помощью средств виртуализации, предоставляемых первой, реальной операционной системой. При попытке обратиться к этому виртуальному железу на уровне привилегированных команд второй операционной системы, в действительности происходит системный вызов реальной, первой операционной системы, которая и производит все необходимые действия. Такой подход позволяет каждому пользователю загрузить свою собственную операционную систему (например, MS-DOS, Linux, или Windows-NT) на виртуальную машину и делать с ней все, что душа пожелает.
Рис. 1.3 Вариант виртуальной машины.
Первой реальной системой такого рода была система CP/CMS или VM/370, как ее называют сейчас, для семейства машин IBM/370.
Недостатком таких операционных систем является снижение эффективности виртуальных машин по сравнению с реальной машиной, и, как правило, они очень громоздки. Преимуществом - использование на одной вычислительной системе программ, написанных для разных операционных систем.
1.4.4 Микроядерная архитектура.
Современная тенденция в разработке операционных систем это перенесение значительной части системного кода на уровень пользователя и одновременной минимизации ядра. Речь идет о подходе к построению ядра, называемом микроядерной архитектурой (microkernel architecture) операционной системы, когда большинство ее составляющих являются самостоятельными программами. В этом случае взаимодействие между ними обеспечивает специальный модуль ядра, называемый микроядром. Микроядро работает в привилегированном режиме и обеспечивает взаимодействие между программами, планирование использования процессора, первичную обработку прерываний, операции ввода-вывода и базовое управление памятью.
Рис. 1.4 Микроядерная архитектура операционной системы
Остальные компоненты системы взаимодействуют друг с другом путем передачи сообщений через микроядро.
Основное достоинство микроядерной архитектуры высокая степень модульности ядра операционной системы. Это существенно упрощает добавление в него новых компонент. В микроядерной операционной системе можно, не прерывая ее работы, загружать и выгружать новые драйверы, файловые системы и т. д. Существенно упрощается процесс отладки компонент ядра, так как новая версия драйвера может загружаться без перезапуска всей операционной системы. Компоненты ядра операционной системы ничем принципиально не отличаются от пользовательских программ, поэтому для их отладки можно применять обычные средства. В то же время, микроядерная архитектура операционной системы вносит дополнительные накладные расходы, связанные с передачей сообщений, что существенно влияет на производительность. Для того чтобы микроядерная операционная система по скорости не уступала операционным системам на базе монолитного ядра, требуется очень аккуратно проектировать разбиение системы на компоненты, стараясь минимизировать взаимодействие между ними. Таким образом, основная сложность при создании микроядерных операционных систем необходимость очень аккуратного проектирования.