
- •Глава 1. Введение в теорию операционных систем
- •1.1 Что такое операционная система.
- •1.1.1 Структура вычислительной системы
- •1.1.2 Что такое ос
- •1.2 Краткая история эволюции вычислительных систем
- •1.3 Основные понятия, концепции ос.
- •1.4 Архитектурные особенности ос.
- •1.4.1 Монолитное ядро
- •1.4.2 Слоеные системы (Layered systems)
- •1.4.3 Виртуальные машины
- •1.4.4 Микроядерная архитектура.
- •1.4.5 Смешанные системы
- •1.5 Классификация ос
- •1.6 Резюме
- •Глава II. Процессы и их поддержка в операционной системе
- •2.1. Понятие процесса
- •2.2. Состояния процесса
- •2.3. Операции над процессами и связанные с ними понятия
- •2.3.1. Набор операций
- •2.3.2. Process Control Block и контекст процесса
- •2.3.3. Одноразовые операции
- •2.3.4. Многоразовые операции
- •2.3.5. Переключение контекста
- •2.4. Резюме
- •Глава 3. Планирование процессов
- •3.1. Уровни планирования
- •3.2. Критерии планирования и требования к алгоритмам
- •3.3. Параметры планирования
- •3.4. Вытесняющее и невытесняющее планирование
- •3.5. Алгоритмы планирования
- •3.5.4. Гарантированное планирование
- •3.5.5. Приоритетное планирование
- •3.5.6. Многоуровневые очереди (Multilevel Queue)
- •3.5.7. Многоуровневые очереди с обратной связью (Multilevel Feedback Queue)
- •3.6. Резюме
- •Глава 4. Кооперация процессов и основные аспекты ее логической организации
- •4.1. Взаимодействующие процессы
- •4.2. Категории средств обмена информацией
- •4.3. Логическая организация механизма передачи информации
- •4.3.1. Как устанавливается связь?
- •4.3.2. Информационная валентность процессов и средств связи
- •4.3.3. Особенности передачи информации с помощью линий связи
- •4.3.3.1 Буферизация
- •4.3.3.2. Поток ввода/вывода и сообщения
- •4.3.4. Надежность средств связи
- •4.3.5. Как завершается связь?
- •4.4. Нити исполнения
- •4.5. Резюме
- •Глава 5. Алгоритмы синхронизации
- •5.1. Interleaving, race condition и взаимоисключения
- •5.2. Критическая секция
- •5.3. Программные алгоритмы организации взаимодействия процессов 5.3.1. Требования, предъявляемые к алгоритмам
- •5.3.2. Запрет прерываний
- •5.3.3. Переменная-замок
- •5.3.4. Строгое чередование
- •5.3.5. Флаги готовности
- •5.3.6. Алгоритм Петерсона
- •5.3.7. Алгоритм булочной (Bakery algorithm)
- •5.4. Аппаратная поддержка взаимоисключений
- •5.4.1. Команда Test-and-Set (Проверить и присвоить 1)
- •5.4.2. Команда Swap (Обменять значения)
- •5.5. Резюме
- •Глава 6. Механизмы синхронизации
- •6.1. Семафоры
- •6.1.1. Концепция семафоров
- •6.1.2. Решение проблемы producer-consumer с помощью семафоров
- •6.2. Мониторы
- •6.3. Сообщения
- •6.4. Эквивалентность семафоров, мониторов и сообщений
- •6.4.1. Реализация мониторов и передачи сообщений с помощью семафоров
- •6.4.2. Реализация семафоров и передачи сообщений с помощью мониторов
- •6.4.3. Реализация семафоров и мониторов с помощью очередей сообщений
- •6.5. Резюме
- •Глава 7. Тупики
- •7.1 Введение
- •7.2 Концепция ресурса
- •7.3 Условия возникновения тупиков
- •7.4 Основные направления борьбы с тупиками.
- •7.5 Алгоритм страуса
- •7.6 Обнаружение тупиков
- •7.7 Восстановление после тупиков
- •7.7.1 Восстановление при помощи перераспределения ресурсов
- •7.7.2 Восстановление через откат назад
- •7.7.3 Восстановление через ликвидацию одного из процессов
- •7.8 Способы предотвращения тупиков путем тщательного распределения ресурсов.
- •7.8.1 Предотвращение тупиков и алгоритм банкира.
- •7.8.2 Недостатки алгоритма банкира
- •7.9 Предотвращение тупиков за счет нарушения условий возникновения тупиков.
- •7.9.1 Нарушение условия взаимоисключения
- •7.9.2 Hарушение условия ожидания дополнительных ресурсов
- •7.9.3 Нарушение принципа неперераспределяемости.
- •7.9.4 Нарушение условия кругового ожидания
- •7.10 Родственные проблемы
- •7.10.1 Двухфазная локализация
- •7.10.2 Тупики не ресурсного типа
- •7.10.3 Голод (starvation)
- •7.11 Заключение.
- •Глава 8. Введение. Простейшие схемы управления памятью.
- •8.1 Введение.
- •8.2 Связывание адресов.
- •8.3 Простейшие схемы управления памятью.
- •8.3.1 Схема с фиксированными разделами.
- •8.3.2 Свопинг
- •8.3.3 Мультипрограммирование с переменными разделами.
- •8.4 Резюме
- •9.1 Проблема размещения больших программ. Понятие виртуальной памяти.
- •9.2 Архитектурные средства поддержки виртуальной памяти.
- •9.2.1 Страничная память
- •9.2.2 Сегментная и сегментно-страничная организации памяти
- •9.2.3 Таблица страниц
- •9.2.4 Ассоциативная память.
- •9.2.5 Иерархия памяти
- •9.2.6 Размер страницы
- •Глава 10. Аппаратно-независимый уровень управления виртуальной памятью
- •10.1 Исключительные ситуации при работе с памятью.
- •10.2 Стратегии управления страничной памятью
- •10.3 Алгоритмы замещения страниц
- •10.3.1 Fifo алгоритм. Выталкивание первой пришедшей страницы.
- •10.3.2 Оптимальный алгоритм
- •10.3.3 Выталкивание дольше всего не использовавшейся страницы. Lru (The Least Recently Used) Algorithm .
- •10.3.4 Выталкивание редко используемой страницы. Nfu (Not Frequently Used) алгоритм.
- •10.3.5 Другие алгоритмы
- •10.4. Thrashing. Свойство локальности. Модель рабочего множества.
- •10.5 Демоны пейджинга
- •10.6 Аппаратно-независимая модель памяти процесса.
- •10.6.1 Структуры данных, используемые для описания сегментной модели
- •10.7 Отдельные аспекты функционирования менеджера памяти.
- •10.8 Заключение
- •Глава 11. Файловые системы. Файлы с точки зрения пользователя
- •11.1 Введение
- •11.2 Имена файлов
- •11.3 Структура файлов
- •11.4 Типы и атрибуты файлов
- •11.5 Доступ к файлам
- •11.6 Операции над файлами.
- •11.7 Директории. Логическая структура файлового архива.
- •11.8 Операции над директориями
- •11.9 Защита файлов.
- •11.9.1 Контроль доступа к файлам
- •11.9.2 Списки прав доступа
- •11.10 Резюме
- •Глава 12. Реализация файловой системы
- •12.1 Интерфейс файловой системы.
- •12.2 Общая структура файловой системы
- •12.3 Структура файловой системы на диске.
- •12.3.1 Методы выделения дискового пространства
- •12.3.2 Управление свободным и занятым дисковым пространством.
- •12.3.3 Размер блока
- •12.3.4 Структура файловой системы на диске
- •12.4 Реализация директорий
- •12.4.1 Примеры реализация директорий в некоторых ос
- •12.4.2 Поиск в директории
- •12.5 Монтирование файловых систем.
- •12.6 Связывание файлов.
- •12.6.1 Организация связи между каталогом и разделяемым файлом
- •12.7 Кооперация процессов при работе с файлами.
- •12.8 Надежность файловой системы.
- •12.8.1 Целостность файловой системы.
- •12.8.2 Управление плохими блоками.
- •12.9 Производительность файловой системы
- •12.10 Реализация некоторых операций над файлами.
- •12.10.1 Системные вызовы, работающие с символическим именем файла.
- •12.10.2 Системные вызовы, работающие с файловым дескриптором
- •12.11 Современные архитектуры файловых систем
- •12.12 Резюме
- •Глава 13. Система управления вводом-выводом
- •13.1 Физические принципы организации ввода-вывода.
- •13.1.1. Общие сведения об архитектуре компьютера.
- •13.1.2. Структура контроллера устройства.
- •13.1.3. Опрос устройств и прерывания. Исключительные ситуации и системные вызовы
- •13.1.4. Прямой доступ к памяти (Direct Memory Access – dma).
- •13.2. Логические принципы организации ввода-вывода.
- •13.2.1. Структура системы ввода-вывода.
- •13.2.2. Систематизация внешних устройств и интерфейс между базовой подсистемой ввода-вывода и драйверами.
- •13.2.3. Функции базовой подсистемы ввода-вывода.
- •13.2.3.1. Блокирующиеся, не блокирующиеся и асинхронные системные вызовы.
- •13.2.3.2. Буферизация и кэширование.
- •13.2.3.3. Spooling и захват устройств.
- •13.2.3.4. Обработка прерываний и ошибок.
- •13.2.3.5. Планирование запросов.
- •13.2.4. Алгоритмы планирования запросов к жесткому диску.
- •13.2.4.1. Строение жесткого диска и параметры планирования.
- •13.2.4.2. Алгоритм First Come First Served (fcfs)
- •13.2.4.3. Алгоритм Short Seek Time First (sstf).
- •13.2.4.4. Алгоритмы сканирования (scan, c-scan, look, c-look)
- •13.3. Резюме.
- •Глава 14. Сети и сетевые операционные системы
- •Глава 15. Основные понятия информационной безопасности.
- •15.1 Введение
- •15.2 Классификация угроз
- •15.3 Формализация подхода к обеспечению информационной безопасности. Классы безопасности
- •15.4 Политика безопасности
- •15.5 Криптография, как одна из базовых технологий безопасности ос.
- •Глава 16. Защитные механизмы операционных систем.
- •16.1 Идентификация и аутентификация
- •16.1.1 Пароли, уязвимость паролей
- •16.2 Авторизация. Разграничение доступа к объектам ос
- •16.2.1 Домены безопасности
- •16.2.2 Матрица доступа
- •16.2.3 Недопустимость повторного использование объектов
- •16.3 Аудит, учет использования системы защиты
- •16.4 Анализ некоторых популярных ос с точки зрения их защищенности.
- •16.5 Резюме
- •Литература
7.5 Алгоритм страуса
Простейший подход - игнорировать проблему тупиков. Различные люди реагируют на подобную стратегию по-разному. Математики находят ее неприемлемой и утверждают, что тупики должны быть предотвращены любой ценой. Инженеры задают вопрос: как часто возникает данная проблема и как часто система виснет по другим причинам? Если тупик встречается раз в пять лет, но аварийный останов системы из-за отказов оборудования, ошибок компиляторов или ОС происходит раз в месяц, большинство инженеров не пожелают пожертвовать производительностью или удобством, чтобы ликвидировать тупик.
Например, ОС Unix, имеющая в ядре ряд массивов фиксированной размерности, потенциально страдает от тупиков, даже если они не обнаружены. Например, суммарное число процессов в системе определяется размерностью таблицы процессов. Если таблица заполнена, вероятность этого ничтожна, но такое может произойти, то для программы, которая делает вызов fork, резонно подождать некоторое время и попытаться осуществить этот вызов вновь. Следует ли отказываться от вызова fork, чтобы решить эту проблему?
Максимальное число открытых файлов аналогичным образом ограничено размером таблицы индексных узлов. С ними может произойти аналогичная ситуация. Пространство выгрузки на диске - другой лимитируемый ресурс. Фактически любая таблица в ОС - конечный ресурс.
Подход Unix состоит в том, чтобы игнорировать данную проблему в предположении, что большинство пользователей предпочтут случайный тупик нелепым правилам заставляющих их иметь один процесс, один открытый файл и т.п. ... Таким образом, мы сталкиваемся с нежелательным выбором между строгостью и удобством. Трудно найти общее, устраивающее всех решение.
7.6 Обнаружение тупиков
Обнаружение тупика это установление факта, что возникла тупиковая ситуация и определение процессов и ресурсов, вовлеченных в эту ситуацию. Как правило, алгоритмы обнаружения применяются, когда выполнены первые три необходимых условия возникновения тупиковой ситуации. Затем проверяется наличие режима кругового ожидания. При этом активно используются уже упоминавшиеся графы распределения ресурсов.
Рассмотрим модельную ситуацию:
Процесс A удерживает ресурс R и ожидает ресурс S.
Процесс B претендует на ресурс T.
Процесс C претендует на ресурс S.
Процесс D удерживает ресурс U и ожидает ресурсы S и T.
Процесс E удерживает ресурс T и ожидает ресурс V.
Процесс F удерживает ресурс W и ожидает ресурс S.
Процесс G удерживает ресурс V и ожидает ресурс U.
Вопрос состоит в том, является ли данная ситуация тупиковой, и если да, то какие процессы в ней участвуют.
Рис. 7.2 (а) Граф ресурсов. (б) Цикл, извлеченный из графа (a).
Для ответа на этот вопрос можно сконструировать граф ресурсов, как показано на рис. 7.2. Из рисунка видно, что имеется цикл, моделирующий условие кругового ожидания, и процессы D,E,G в тупиковой ситуации
Визуально легко обнаружить наличие тупика, но нужны также формальные алгоритмы, реализуемые на компьютере.
Один из таких алгоритмов описан в [14], там же можно найти ссылки на другие алгоритмы.
Существуют и другие способы обнаружения тупиков, применимые также в ситуациях, когда имеется несколько ресурсов каждого типа. Так в [24] описан способ, называемый редукцией графа распределения ресурсов, а в [14] матричный алгоритм.