
- •Глава 1. Введение в теорию операционных систем
- •1.1 Что такое операционная система.
- •1.1.1 Структура вычислительной системы
- •1.1.2 Что такое ос
- •1.2 Краткая история эволюции вычислительных систем
- •1.3 Основные понятия, концепции ос.
- •1.4 Архитектурные особенности ос.
- •1.4.1 Монолитное ядро
- •1.4.2 Слоеные системы (Layered systems)
- •1.4.3 Виртуальные машины
- •1.4.4 Микроядерная архитектура.
- •1.4.5 Смешанные системы
- •1.5 Классификация ос
- •1.6 Резюме
- •Глава II. Процессы и их поддержка в операционной системе
- •2.1. Понятие процесса
- •2.2. Состояния процесса
- •2.3. Операции над процессами и связанные с ними понятия
- •2.3.1. Набор операций
- •2.3.2. Process Control Block и контекст процесса
- •2.3.3. Одноразовые операции
- •2.3.4. Многоразовые операции
- •2.3.5. Переключение контекста
- •2.4. Резюме
- •Глава 3. Планирование процессов
- •3.1. Уровни планирования
- •3.2. Критерии планирования и требования к алгоритмам
- •3.3. Параметры планирования
- •3.4. Вытесняющее и невытесняющее планирование
- •3.5. Алгоритмы планирования
- •3.5.4. Гарантированное планирование
- •3.5.5. Приоритетное планирование
- •3.5.6. Многоуровневые очереди (Multilevel Queue)
- •3.5.7. Многоуровневые очереди с обратной связью (Multilevel Feedback Queue)
- •3.6. Резюме
- •Глава 4. Кооперация процессов и основные аспекты ее логической организации
- •4.1. Взаимодействующие процессы
- •4.2. Категории средств обмена информацией
- •4.3. Логическая организация механизма передачи информации
- •4.3.1. Как устанавливается связь?
- •4.3.2. Информационная валентность процессов и средств связи
- •4.3.3. Особенности передачи информации с помощью линий связи
- •4.3.3.1 Буферизация
- •4.3.3.2. Поток ввода/вывода и сообщения
- •4.3.4. Надежность средств связи
- •4.3.5. Как завершается связь?
- •4.4. Нити исполнения
- •4.5. Резюме
- •Глава 5. Алгоритмы синхронизации
- •5.1. Interleaving, race condition и взаимоисключения
- •5.2. Критическая секция
- •5.3. Программные алгоритмы организации взаимодействия процессов 5.3.1. Требования, предъявляемые к алгоритмам
- •5.3.2. Запрет прерываний
- •5.3.3. Переменная-замок
- •5.3.4. Строгое чередование
- •5.3.5. Флаги готовности
- •5.3.6. Алгоритм Петерсона
- •5.3.7. Алгоритм булочной (Bakery algorithm)
- •5.4. Аппаратная поддержка взаимоисключений
- •5.4.1. Команда Test-and-Set (Проверить и присвоить 1)
- •5.4.2. Команда Swap (Обменять значения)
- •5.5. Резюме
- •Глава 6. Механизмы синхронизации
- •6.1. Семафоры
- •6.1.1. Концепция семафоров
- •6.1.2. Решение проблемы producer-consumer с помощью семафоров
- •6.2. Мониторы
- •6.3. Сообщения
- •6.4. Эквивалентность семафоров, мониторов и сообщений
- •6.4.1. Реализация мониторов и передачи сообщений с помощью семафоров
- •6.4.2. Реализация семафоров и передачи сообщений с помощью мониторов
- •6.4.3. Реализация семафоров и мониторов с помощью очередей сообщений
- •6.5. Резюме
- •Глава 7. Тупики
- •7.1 Введение
- •7.2 Концепция ресурса
- •7.3 Условия возникновения тупиков
- •7.4 Основные направления борьбы с тупиками.
- •7.5 Алгоритм страуса
- •7.6 Обнаружение тупиков
- •7.7 Восстановление после тупиков
- •7.7.1 Восстановление при помощи перераспределения ресурсов
- •7.7.2 Восстановление через откат назад
- •7.7.3 Восстановление через ликвидацию одного из процессов
- •7.8 Способы предотвращения тупиков путем тщательного распределения ресурсов.
- •7.8.1 Предотвращение тупиков и алгоритм банкира.
- •7.8.2 Недостатки алгоритма банкира
- •7.9 Предотвращение тупиков за счет нарушения условий возникновения тупиков.
- •7.9.1 Нарушение условия взаимоисключения
- •7.9.2 Hарушение условия ожидания дополнительных ресурсов
- •7.9.3 Нарушение принципа неперераспределяемости.
- •7.9.4 Нарушение условия кругового ожидания
- •7.10 Родственные проблемы
- •7.10.1 Двухфазная локализация
- •7.10.2 Тупики не ресурсного типа
- •7.10.3 Голод (starvation)
- •7.11 Заключение.
- •Глава 8. Введение. Простейшие схемы управления памятью.
- •8.1 Введение.
- •8.2 Связывание адресов.
- •8.3 Простейшие схемы управления памятью.
- •8.3.1 Схема с фиксированными разделами.
- •8.3.2 Свопинг
- •8.3.3 Мультипрограммирование с переменными разделами.
- •8.4 Резюме
- •9.1 Проблема размещения больших программ. Понятие виртуальной памяти.
- •9.2 Архитектурные средства поддержки виртуальной памяти.
- •9.2.1 Страничная память
- •9.2.2 Сегментная и сегментно-страничная организации памяти
- •9.2.3 Таблица страниц
- •9.2.4 Ассоциативная память.
- •9.2.5 Иерархия памяти
- •9.2.6 Размер страницы
- •Глава 10. Аппаратно-независимый уровень управления виртуальной памятью
- •10.1 Исключительные ситуации при работе с памятью.
- •10.2 Стратегии управления страничной памятью
- •10.3 Алгоритмы замещения страниц
- •10.3.1 Fifo алгоритм. Выталкивание первой пришедшей страницы.
- •10.3.2 Оптимальный алгоритм
- •10.3.3 Выталкивание дольше всего не использовавшейся страницы. Lru (The Least Recently Used) Algorithm .
- •10.3.4 Выталкивание редко используемой страницы. Nfu (Not Frequently Used) алгоритм.
- •10.3.5 Другие алгоритмы
- •10.4. Thrashing. Свойство локальности. Модель рабочего множества.
- •10.5 Демоны пейджинга
- •10.6 Аппаратно-независимая модель памяти процесса.
- •10.6.1 Структуры данных, используемые для описания сегментной модели
- •10.7 Отдельные аспекты функционирования менеджера памяти.
- •10.8 Заключение
- •Глава 11. Файловые системы. Файлы с точки зрения пользователя
- •11.1 Введение
- •11.2 Имена файлов
- •11.3 Структура файлов
- •11.4 Типы и атрибуты файлов
- •11.5 Доступ к файлам
- •11.6 Операции над файлами.
- •11.7 Директории. Логическая структура файлового архива.
- •11.8 Операции над директориями
- •11.9 Защита файлов.
- •11.9.1 Контроль доступа к файлам
- •11.9.2 Списки прав доступа
- •11.10 Резюме
- •Глава 12. Реализация файловой системы
- •12.1 Интерфейс файловой системы.
- •12.2 Общая структура файловой системы
- •12.3 Структура файловой системы на диске.
- •12.3.1 Методы выделения дискового пространства
- •12.3.2 Управление свободным и занятым дисковым пространством.
- •12.3.3 Размер блока
- •12.3.4 Структура файловой системы на диске
- •12.4 Реализация директорий
- •12.4.1 Примеры реализация директорий в некоторых ос
- •12.4.2 Поиск в директории
- •12.5 Монтирование файловых систем.
- •12.6 Связывание файлов.
- •12.6.1 Организация связи между каталогом и разделяемым файлом
- •12.7 Кооперация процессов при работе с файлами.
- •12.8 Надежность файловой системы.
- •12.8.1 Целостность файловой системы.
- •12.8.2 Управление плохими блоками.
- •12.9 Производительность файловой системы
- •12.10 Реализация некоторых операций над файлами.
- •12.10.1 Системные вызовы, работающие с символическим именем файла.
- •12.10.2 Системные вызовы, работающие с файловым дескриптором
- •12.11 Современные архитектуры файловых систем
- •12.12 Резюме
- •Глава 13. Система управления вводом-выводом
- •13.1 Физические принципы организации ввода-вывода.
- •13.1.1. Общие сведения об архитектуре компьютера.
- •13.1.2. Структура контроллера устройства.
- •13.1.3. Опрос устройств и прерывания. Исключительные ситуации и системные вызовы
- •13.1.4. Прямой доступ к памяти (Direct Memory Access – dma).
- •13.2. Логические принципы организации ввода-вывода.
- •13.2.1. Структура системы ввода-вывода.
- •13.2.2. Систематизация внешних устройств и интерфейс между базовой подсистемой ввода-вывода и драйверами.
- •13.2.3. Функции базовой подсистемы ввода-вывода.
- •13.2.3.1. Блокирующиеся, не блокирующиеся и асинхронные системные вызовы.
- •13.2.3.2. Буферизация и кэширование.
- •13.2.3.3. Spooling и захват устройств.
- •13.2.3.4. Обработка прерываний и ошибок.
- •13.2.3.5. Планирование запросов.
- •13.2.4. Алгоритмы планирования запросов к жесткому диску.
- •13.2.4.1. Строение жесткого диска и параметры планирования.
- •13.2.4.2. Алгоритм First Come First Served (fcfs)
- •13.2.4.3. Алгоритм Short Seek Time First (sstf).
- •13.2.4.4. Алгоритмы сканирования (scan, c-scan, look, c-look)
- •13.3. Резюме.
- •Глава 14. Сети и сетевые операционные системы
- •Глава 15. Основные понятия информационной безопасности.
- •15.1 Введение
- •15.2 Классификация угроз
- •15.3 Формализация подхода к обеспечению информационной безопасности. Классы безопасности
- •15.4 Политика безопасности
- •15.5 Криптография, как одна из базовых технологий безопасности ос.
- •Глава 16. Защитные механизмы операционных систем.
- •16.1 Идентификация и аутентификация
- •16.1.1 Пароли, уязвимость паролей
- •16.2 Авторизация. Разграничение доступа к объектам ос
- •16.2.1 Домены безопасности
- •16.2.2 Матрица доступа
- •16.2.3 Недопустимость повторного использование объектов
- •16.3 Аудит, учет использования системы защиты
- •16.4 Анализ некоторых популярных ос с точки зрения их защищенности.
- •16.5 Резюме
- •Литература
Глава 3. Планирование процессов
Всякий раз, когда нам приходится иметь дело с ограниченным количеством ресурсов и несколькими их потребителями, будь то фонд заработной платы в трудовом коллективе или студенческая вечеринка с несколькими ящиками пива, мы вынуждены заниматься распределением наличных ресурсов между потребителями или, другими словами, планированием использования ресурсов. Такое планирование должно иметь четко поставленные критерии (чего мы хотим добиться распределением ресурсов) и алгоритмы, соответствующие критериям и опирающиеся на параметры потребителей. Только при правильном выборе критериев и алгоритмов можно избежать таких вопросов, как “Почему я получаю в десять раз меньше, чем мой шеф?” или “А где мое пиво?”. Настоящая глава посвящена планированию исполнения процессов в мультипрограммных вычислительных системах или, кратко говоря, планированию процессов.
3.1. Уровни планирования
В первой главе, рассматривая эволюцию компьютерных систем, мы говорили о существовании двух видов планирования в вычислительных системах: планировании заданий и планировании использования процессора. Планирование заданий появилось в пакетных системах после того, как для хранения сформированных пакетов заданий начали использоваться магнитные диски. Магнитные диски, будучи устройствами прямого доступа, позволяют загружать задания в компьютер в произвольном порядке, а не только в том последовательном порядке, в котором они были записаны на диск. Изменяя порядок загрузки заданий в вычислительную систему, можно повысить эффективность ее использования. Процедуру выбора очередного задания для загрузки в машину, т. е. для порождения соответствующего процесса, мы и назвали планированием заданий. Планирование использования процессора впервые возникает в мультипрограммных вычислительных системах, где в состоянии готовность могут одновременно находиться несколько процессов. Именно для процедуры выбора из них одного процесса, который получит процессор в свое распоряжение, т.е. будет переведен в состояние исполнение, мы использовали это словосочетание. Теперь, когда мы познакомились с концепцией процессов в вычислительных системах, оба этих вида планирования мы будем рассматривать как различные уровни планирования процессов.
Планирование заданий выступает в качестве долгосрочного планирования процессов. Оно отвечает за порождение новых процессов в системе, определяя ее степень мультипрограммирования, т. е. количество процессов, одновременно находящихся в ней. Если степень мультипрограммирования системы поддерживается постоянной, т. е. среднее количество процессов в компьютере не меняется, то новые процессы могут появляться только после завершения ранее загруженных. Поэтому долгосрочное планирование осуществляется достаточно редко, между появлением новых процессов могут проходить минуты и даже десятки минут. Решение о выборе для запуска того или иного процесса оказывает влияние на функционирование вычислительной системы на протяжении достаточно длительного интервала времени. Отсюда и проистекает название этого уровня планирования — долгосрочное. В некоторых операционных системах долгосрочное планирование сведено к минимуму или совсем отсутствует. Так, например, во многих интерактивных системах разделения времени порождение процесса происходит сразу после появления соответствующего запроса. Поддержание разумной степени мультипрограммирования осуществляется за счет ограничения количества пользователей, которые могут работать в системе, и человеческой психологии. Если между нажатием на клавишу и появлением символа на экране проходит 20-30 секунд, то многие пользователи предпочтут прекратить работу и продолжить ее, когда система будет менее загружена.
Планирование использования процессора выступает в качестве краткосрочного планирования процессов. Оно проводится, к примеру, при обращении исполняющегося процесса к устройствам ввода-вывода или просто по завершении определенного интервала времени. Поэтому краткосрочное планирование осуществляется весьма часто, как правило, не реже одного раза в 100 миллисекунд. Выбор нового процесса для исполнения оказывает влияние на функционирование системы до наступления очередного аналогичного события, т. е. в течение короткого промежутка времени, что и обусловило название этого уровня планирования — краткосрочное.
В некоторых вычислительных системах бывает выгодно для повышения их производительности временно удалить какой-либо частично выполнившийся процесс из оперативной памяти на жесткий диск, а позже вернуть его обратно для дальнейшего выполнения. Такая процедура в англоязычной литературе получила название swapping, что можно перевести на русский язык как перекачка, хотя в профессиональной литературе оно употребляется без перевода — свопинг. Когда и какой из процессов нужно перекачать на диск и вернуть обратно, решается дополнительным промежуточным уровнем планирования процессов — среднесрочным.