
- •I. Введение
- •1.1. Классификация процесса пищевых производств
- •1.2. Классификация оборудования
- •Основные положения темы
- •Тест для проверки знаний.
- •1.3. Основные законы науки о процессах и аппаратах
- •1.4. Технические свойства пищевых продуктов
- •Коэффициент теплопроводности жидкости при температуре t
- •Механические процессы
- •2.1. Измельчение
- •2.1.1. Оборудование для измельчения Вальцовые станки
- •Техническая характеристика станков типа зм2
- •2.1.2. Мясорубки, волчки, куттеры
- •Техническая характеристика волчка-дробилки в2-фд2-б
- •2.2. Сортирование пищевого сырья
- •2.2.1. ОБорудование для сортирования
- •2.2.2. Классификация оборудования
- •Оборудование для инспекции пищевого растительного сырья
- •Практическая работа №2
- •2.2.3. Классификация оборудования
- •Штампующие машины
- •Техническая характеристика штумпующей машины для макаронных изделий
- •Контрольные вопросы
- •2.3. Основные виды обработки давлением
- •2.3.1. Машины для обработки пищевых масс давлением
- •Уплотнение массы характеризуется коэффициентом штампования
- •2.3.2. Процессы в шнековых формообразующих прессах
- •Контрольные вопросы и задания
- •Тест для проверки знаний
- •III. Гидромеханические процессы
- •3.1. Разделение неоднородных систем
- •Классификация неоднородных систем
- •Классификация и характеристика неоднородных систем
- •3.1.1. Классификация процессов разделения неоднородных систем
- •3.1.2. Осаждение
- •Теоретические основы процесса
- •3.1.3. Оборудование для осаждения в поле силы тяжести
- •Суспензия
- •Основные положения темы
- •Контрольные вопросы и задания
- •Тесты для проверки знаний
- •3.2. Фильтрование. Общие сведения
- •3.3.1. Оборудование для фильтрования
- •Контрольные вопросы и задания
- •Тесты для проверки знаний
- •Чем различаются шламовое и закупорочное фильтрование?
- •Для чего на фильтрующие перегородки намывают слой кизельгура?
- •3. Почему при одинаковых перепадах давлений на фильтре для суспензий со сжимаемыми осадками фильтрование под вакуумом более производительно, чем под избыточным давлением?
- •5. Почему для непрерывного фильтрования сахара применена толкающая центрифуга, а не саморазгружающаяся с коническим ситом?
- •3.3. Перемешивание жидких и сыпучих смесей
- •Смесители жидких продуктов
- •3.4. Сущность гомогенизации.
- •Основные положения
- •Контрольные вопросы и задания
- •Тесты для проверки знаний
- •IV. Тепловые процессы
- •4.1. Способы передачи тепла
- •4.1.1. Использование феноменологического метода при расчёте тепловых процессов
- •4.1.2. Средние температуры в расчетах теплообменника
- •4.1.3. Расчеты коэффициентов теплоотдачи
- •4.1.4. Получение экспериментальных зависимостей для расчета
- •Основные положения
- •Контрольные вопросы и задания.
- •Тесты для проверки знаний
- •1. Какой из названных далее параметров является обобщенной действующей силой, побуждающей теплообмен в кожухотрубном теплообменнике?
- •4.1.5. Аппараты для нагревания и охлаждения
- •4.2. Типичные схемы теплообменников
- •4.3. Методы выпаривания
- •4.3.1 Однокорпусные вакуумные выпарные установки
- •4.3.2. Многокорпусные вакуумные выпарные установки
- •4.3.3. Устройство выпарных аппаратов
- •Основные положения
- •Контрольные вопросы и задания
- •Тесты для проверки знаний
- •Что такое температурная депрессия?
- •4.4. Пастеризация и стерилизация
- •Давление внутри банки р2 (кПа) определяется в виде
- •4.5. Конденсация
- •4.5.1.. Конденсация в контактных конденсаторах
- •Основные положения
- •Контрольные вопросы и задания
- •Тесты для проверки знаний
- •Что такое дефлегматор?
- •4.6. Способы охлаждения и циклы холодильных машин способы охлаждения
- •4.6.1. Прямой и обратный циклы карно. Энтропия
- •4.6.2. Схемы и циклы холодильных машин
- •Основные положения.
- •Контрольные вопросы и задания
- •Тесты для проверки знаний
- •3. Какой процесс вызывает эффективное охлаждение продукта при его размещении в вакуумной камере?
- •V. Массообменные процессы
- •5.1. Теоретические основы массопрередачи
- •5.1.1. Массообменные аппараты способы организации контакта фаз
- •5.1.2. Массообменные аппараты с пленочным течением
- •5.1.3.Массообменные аппараты с барботажем.
- •5.1.4. Тарелки ректификационных аппаратов и насадки насадочных аппаратов
- •5.2. Абсорбция
- •5.2.1. Классификация абсорберов
- •5.3. Адсорберы
- •Контрольные вопросы и задания
- •Тесты для проверки знаний
- •1. Чем отличается адсорбция от абсорбции?
- •. Контрольные вопросы и задания
- •Тесты для проверки знаний
- •1. Чем отличается адсорбция от абсорбции?
- •3. В связи с поглощением вещества поверхностью, а не объемом адсорбента понятие концентрации адсорбтива теряет смысл. Какой параметр выступает вместо него при расчетах адсорберов?
- •5.4. Экстракция
- •5.4.1. Классификация оборудования
- •4.10. Классификация оборудования
- •5.4.2. Установка для получения настоек и морсов
- •5.4.3. Аппарат для экстракции растительного масла
- •5.5. Сушка пищевых продуктов
- •Используя уравнение состояния для 1 кг сухого воздуха, запишем
- •Таким образом, удельная теплоемкость влажного воздуха
- •5.5.1.Устройство сушилок
- •Вакуум-сублимационные сушилки
- •Микроволновые сушильные установки
- •Основные положения
- •Контрольные вопросы и задания
- •Тесты для проверки знаний
- •1. Почему при сушке чередуются воздействия на изделие высокой и низкой температур?
- •2. Почему сушилка называется туннельной?
- •5.7. Кристаллизация и растворение
- •Основные положения
- •Контрольные вопросы и задания
- •Тесты для проверки знаний
- •1. Почему для начала кристаллизации недостаточно вывести параметры раствора на кривую насыщения?
- •2. Почему непосредственное выпадение кристаллов из утфеля организуют в отдельных аппаратах?
- •4. Для чего поверхности нагрева в кристаллизаторах устраивают предельно низко?
- •6. Какой из названных далее способов кристаллизации обеспечит получение кристаллов приблизительно одинаковых размеров?
Контрольные вопросы и задания
1. Какие способы сушки вам известны? 2. Приведите примеры сушилок, в которых эти способы сушки реализуются. 3. Изобразите сушильный процесс в конвективной сушилке в i—d диаграмме. 4. Запишите материальный и тепловой балансы сушки. 5. Расскажите об устройстве сушилок следующих типов: туннельных; барабанных; ленточных; шахтных; распылительных; камерных.
Тесты для проверки знаний
1. Почему при сушке чередуются воздействия на изделие высокой и низкой температур?
Ответы 1.1. Для предотвращения подгорания поверхности.
1.2. Для возвращения к периферии изделия влаги, ушедшей от нее в процессе термодиффузии.
1.3. Для интенсификации сушки.
2. Почему сушилка называется туннельной?
Ответы 2.1. Потому что располагается в туннелях под землей.
2.2. Потому что вытянута в линию, вдоль которой изменяются параметры сушильного агента.
Потому что не допускает поворотов.
5.7. Кристаллизация и растворение
Кристаллизация — разделение однородных жидких растворов на твердую и жидкую фазы: растворенное вещество и растворитель. Выпадение кристаллов из растворов может быть либо полезным процессом пищевого производства, в частности, завершающей стадией сахаро-песочного, лимонно-кислотного, глюкозного и других процессов, либо процессом, который необходимо блокировать, в частности, в производстве карамели, при охлаждении молока после сгущения и др.
Растворение — образование однородной системы (раствора) из твердого вещества и жидкого растворителя без формирования остаточной пористой структуры, называемой шламом. Если в результате взаимодействия твердого тела с жидким растворителем остаются пористые тела (скелет) или нерастворимый осадок (шлам), то такой процесс называют выщелачиванием. Выщелачивание включает как минимум два процесса — диффузию вещества в порах шлама и его переход в жидкость на поверхности.
Перекристаллизация — чередование процессов кристаллизации и растворения. Перекристаллизацию часто применяют для очистки продукта.
Растворение кристаллов в жидкости включает следующие процессы:
отрыв отдельных молекул от поверхности кристаллов в результате флуктуации собственного колебательного (осциллирующего) движения и вследствие притяжения молекулами растворителя;
диффузия оторвавшихся молекул в объеме растворителя;
обратный переход молекул твердого вещества из раствора в кристаллы при соударениях с ними.
При повышении концентрации молекул растворимого вещества в растворителе первый из этих процессов замедляется, а последний ускоряется, так как движущей силой обоих процессов является разность концентраций растворяемого вещества на поверхности кристалла и в растворе, которая при этом уменьшается. Поэтому при достижении некоторой концентрации в растворе, называемой равновесной, оба эти процесса уравновешиваются по скорости и дальнейшее изменение концентрации прекращается. Такой раствор называют насыщенным. Растворы с большей концентрацией называют концентрированными, или пересыщенными, а с меньшей - разбавленными.
Концентрацию растворенного вещества в равновесном (насыщенном) растворе называют растворимостью. Она выражается разными величинами: относительной массой растворенного вещества, молярной его долей в растворе и т. п. Степень отклонения раствора от состояния насыщения характеризуется коэффициентом пересыщения П, являющемся отношением концентрации растворенного вещества С к растворимости С0:
П=С/С0.
На растворимость веществ существенно влияют примеси и температура среды.
Для выделения растворенного вещества из раствора необходимо создать условия для его пересыщения. Это достигается кристаллизацией в процессе:
сгущения раствора путем выпаривания растворителя при постоянной температуре кипения (изотермическая);
охлаждения раствора, понижающем растворимость (изогидрическая, т. е. протекающая при постоянном количестве растворителя);
связывания растворителя химическими способами («высаливание»).
Если в процессе выпаривания растворителя его убыль восполняется поступлением свежего раствора, то такой процесс называют изотермически-изогидрическим.
В реальных процессах кристаллизация практически никогда не начинается при значениях параметров, соответствующих насыщенному раствору. Вблизи этих значений параметров выделяется
область метастабильного раствора (предшествующего стабильному), отделяющая область стабильного (разбавленного) раствора от области лабильного (неустойчивого) пересыщенного раствора. Это иллюстрируется рисунком 39.1 в координатах концентрация растворенного вещества С — температура t. Метастабильная зона концентраций ограничена на этом рисунке кривыми растворимости Со и максимально достижимым пределом пересыщения Сmах.
При достижении максимальной концентрации Сmах самопроизвольно начинается спонтанно протекающая кристаллизация. Растворы с концентрацией, превышающей предельную, называют лабильными. В эти представления могут быть внесены поправки, связанные с наличием в растворах примесей.
На рисунке 39.1 изображены процессы изменения состояния растворов. Ненасыщенный раствор, характеризующийся точкой А (С1, Сt), вначале охлаждается при С = const, т. е. по горизонтальной линии АВН и при изменении температуры от t1 до t2.
При температуре t1 линия этого процесса пересекает линию насыщения, однако выпадения кристаллов не наблюдается вплоть до температуры t2. Начавшись в точке Н, процесс кристаллизации протекает по линии HD, т. е. при t = const, и проходит до достижения концентрации С2 на кривой растворимости при t = t2
Процесс кристаллизации с выпариванием изобразится на этом рисунке линией AEG, состоящей из участка АЕ повышения температуры до точки кипения t" (до достижения концентрации С1), и участка EG повышения концентрации путем выпаривания до начала кристаллизации (до С3). После начала кристаллизации процесс либо остается постоянно соответствующим состоянию точки G (если ведется подпитка свежим раствором), либо вновь возвращается к точке Е, если выпаривание прекращается.
Обобщенной действующей силой процесса кристаллизации является разность фактической концентрации ΔС пересыщенного раствора Сп.р и концентрации, лежащей на кривой насыщения Сн:
ΔС = СП.р -Сн.
Массовый поток кристаллов (кг/с) можно связать с движущей силой выражением
ΔМ = FKΔC,
где F— площадь поверхности кристаллов в рассматриваемый момент времени, м2; К— феноменологический коэффициент интенсивности кристаллизации, кг/(м2с); ΔС —разность концентраций, моль/моль.