
- •Лекция 1
- •Раздел 1. Совместная работа цифровых элементов в составе узлов и устройств
- •Тема 1.1. Типы выходных каскадов. В данной лекции затронуты следующие вопросы:
- •Логические функции и логические элементы. Основные понятия
- •Представление информации физическими сигналами.
- •Логические функции.
- •Литература
- •Лекция 2
- •Тема 1.2. Цепи питания. Согласование связей. В данной лекции затронуты следующие вопросы:
- •Законы алгебры логики
- •Произвольные функции и логические схемы
- •Литература
- •Лекция 3
- •Тема 1.3. Элементы задержки. Формирователи импульсов.
- •В данной лекции затронуты следующие вопросы:
- •Элементы задержки. Формирователи импульсов. Генераторы одиночных импульсов. Кварцевый генератор импульсов. Расчет параметров.
- •Минимизация функций
- •Литература
- •Лекция 4
- •Тема 1.4. Элементы индикации. Оптоэлектронные развязки. В данной лекции затронуты следующие вопросы:
- •Интегральные логические элементы.
- •Характеристики лэ.
- •Серии лэ.
- •Правила схемного включения лэ.
- •Лэ с тремя состояниями выхода
- •Литература
- •Лекция 5
- •Раздел 2. Синхронизация в цифровых устройствах.
- •Тема 2.1. Синхронизация в цифровых устройствах.
- •В данной лекции затронуты следующие вопросы:
- •Цифровые устройства со статическим и динамическим управлением. Понятие «гонок» в цифровых устройствах и методы их устранения. Устройства синхронизации.
- •Этапы построения (синтеза) комбинационной схемы.
- •Литература
- •Лекция 6
- •Тема 2.2. Риски сбоя в комбинационных и последовательных схемах.
- •В данной лекции затронуты следующие вопросы:
- •Понятие комбинационных и последовательных схем. Риски сбоя в комбинационных и последовательных схемах. Понятие «гонок» в цифровых устройствах и методы их устранения.
- •Литература
- •Лекция 7
- •Раздел 3. Функциональные узлы комбинационного типа.
- •Тема 3.1. Дешифраторы. Шифраторы. В данной лекции затронуты следующие вопросы:
- •Типовые комбинационные устройства
- •Преобразователи кодов (пк)
- •Дешифраторы.
- •Шифраторы
- •Преобразование произвольных кодов.
- •Литература
- •Лекция 8
- •Тема 3.2. Мультиплексоры. Демультиплексоры. В данной лекции затронуты следующие вопросы:
- •Коммутаторы Мультиплексоры
- •Демультиплексоры.
- •Литература
- •Лекция 9
- •Тема 3.3. Сумматоры. В данной лекции затронуты следующие вопросы:
- •Арифметические устройства.
- •Сумматоры.
- •Цифровые компараторы.
- •Контроль четности
- •Литература
- •Лекция 10
- •Раздел 4. Функциональные узлы последовательного типа.
- •Тема 4.1. Регистры. В данной лекции затронуты следующие вопросы:
- •Последовательностные схемы
- •Триггеры
- •Двухступенчатые триггеры
- •Асинхронные входы триггеров
- •Регистры Параллельные регистры
- •Регистровая память
- •Сдвигающие регистры
- •Литература
- •Лекция 11
- •Тема 4.2. Счетчики. Распределители. В данной лекции затронуты следующие вопросы:
- •Счетчики Общие понятия
- •Асинхронные счетчики
- •Синхронные счетчики
- •Интегральные счетчики.
- •Счетчики с различными коэффициентами пересчета.
- •Литература
- •Лекция 12
- •Раздел 5. Бис/сбис с программируемой структурой.
- •Тема 5.1. Программируемые логические матрицы. В данной лекции затронуты следующие вопросы:
- •Программируемые логические матрицы
- •Литература
- •Лекция 13
- •Тема 5.2. Программируемая матричная логика. В данной лекции затронуты следующие вопросы:
- •Классификация логических микросхем программируемой логики
- •Общие (системные) свойства микросхем программируемой логики
- •Литература
- •Лекция 14
- •Тема 5.3. Базовые матричные кристаллы. В данной лекции затронуты следующие вопросы:
- •Базовые матричные кристаллы (вентильные матрицы)
- •Литература
- •Лекция 15
- •Тема 5.4. Оперативно перестраиваемые fpga. В данной лекции затронуты следующие вопросы:
- •Программируемые пользователем вентильные матрицы (fpga) Xilinx Spartan-3e открывают новые перспективы для jvc gy-hd250
- •Литература
- •Лекция 16
- •Раздел 6. Схемотехника зу.
- •Тема 6.1. Статические и динамические зу. В данной лекции затронуты следующие вопросы:
- •Оперативные запоминающие устройства (озу) Разновидности оперативной памяти
- •Построение блоков озу
- •Параметры пзу.
- •Применение пзу для реализации произвольных логических функций.
- •Литература
- •Лекция 17
- •Тема 6.2. Масочные и прожигаемые зу. В данной лекции затронуты следующие вопросы:
- •Зу с одномерной адресацией.
- •Литература
- •Лекция 18
- •Тема 6.3. Зу на основе бис/сбис. В данной лекции затронуты следующие вопросы:
- •Построение блоков памяти на бис пзу.
- •Литература
- •Лекция 19
- •Раздел 7. Микропроцессорные комплекты бис/сбис. В данной лекции затронуты следующие вопросы:
- •Литература
- •Лекция 20
- •Раздел 8. Автоматизация функционально-логического этапа цифровых узлов и устройств. В данной лекции затронуты следующие вопросы:
- •Логические и эксплуатационные основы средних и больших интегральных схем
- •Литература
Синхронные счетчики
С
целью уменьшения времени протекания
переходных процессов схему, показанную
на рис. 4.9, а, можно реализовать в варианте
с подачей входных импульсов одновременно
на все триггеры. В этом случае каждый
триггер вырабатывает для всех последующих
лишь сигналы управления, являющиеся
логической функцией состояния счетчика
и определяющие конкретные триггеры,
которые изменяют состояние при данном
входном импульсе. Принцип формирования
этих сигналов следует из временной
диаграммы на рис.4.9,б :
триггер меняет состояние при поступлении
очередного счетного импульса , если все
предыдущие триггеры находились в
состоянии 1. Отсюда и следует схема
синхронного счетчика, показанная на
рис.4.10.
Рис. 4.10 Четырехразрядный синхронный счетчик
Быстродействие счетчика характеризуется разрешающим временем, т.е. минимальным временным интервалом между входными сигналами, при котором счетчик еще правильно функционирует. Максимальная частота счета Fmax связана с разрешающим временем Тразр простым соотношением: Fmax = Т -1разр . Очевидно, что быстродействие синхронных счетчиков при прочих равных условиях всегда выше, чем асинхронных.
Интегральные счетчики.
Интегральный двоичный асинхронный счетчик К155И.Е5 (рис.4.11) состоит из счетчика на 2 (триггер T1) и счетчика на 8 (триггеры Т2-Т4), соединение которых исходно отсутствует. Установка "0" производится, когда на входах R1 и R2 одновременно "1". Во время работы хотя бы на одном из входов должен быть "0". Для получения 4-х разрядного счетчика внешней перемычкой соединяют выход Q0 со входом C2.
Десятичные счетчики строят обычно на основе четырехразрядных двоичных счетчиков. Для того чтобы уменьшить Ксч четырехразрядного счетчика с 16 до 10, вводят дополнительные логические связи. При этом в зависимости от вида логической связи одним и тем же десятичным числам в разных счетчиках могут соответствовать различные двоичные кодовые комбинации или, иначе говоря, счетчики работают в различных двоично-десятичных кодах.
Рис. 4.11. Структура счетчика К155ИЕ5
Схема на рис.4.12 соответствует десятичному счетчику К 155 ИЕ 2, работающему в коде 8-4-2-1. Счетчик состоит из счетчика на 2 (триггер TI) и счетчика на 5 (триггеры Т2-Т4), соединение которых исходно отсутствует. Для образования десятичного счетчика выводы Q0 и C2 соединяются между собой. Счетчик имеет входы нетактируемой установки в "0" (0000) и в "9" (1001) - выводы R1,R2 и S1,S2. Во время счета хотя 6ы на одной из каждой пары входов должен быть "0".
Рис. 4.12. Структура счетчика К155ИЕ2
У
словные
обозначения асинхронных счетчиков
К155ИЕ 5, К155ИЕ 2 и синхронных счетчиков
К155ИЕ 7 и К155ИЕ 6 показаны на рис.4.13
Рис.4.13. Условные обозначения счетчиков.
К155ИЕ7. интегральный реверсивный двоичный синхронный счетчик имеет два счетных входа: вход суммирования +1 и вход вычитания –1.
Если все триггеры находятся в состоянии "1", то при приходе импульса на вход суммирования (+1) формируется сигнал "переноса" ( ( 15 ). Импульс на входе (-1), если все триггеры находятся в состоянии "0", формирует сигнал "заема" ( 0). Эти сигналы используются для увеличения разрядности счетчиков.
К155ИЕ6 –синхронный реверсивный десятичный счетчик, работающий в коде 8-4-2-1. Кроме двоичных реверсивных межтриггерных связей, в счетчике KI55 ИЕ б существуют дополнительные логические цепи, обеспечивающие недвоичный переход от кода 1001 к коду 0000 при суммировании и обратный переход при вычитании.
Сброс счетчиков KI55 ИЕ 6 и К155 ИЕ 7 производится сигналом "1", подаваемом на вход R Во время счета на этом выводе должен быть "0".
В обоих счетчиках триггеры имеют входы предварительной установки D, тактируемые потенциалом. В режиме счета сигнал на входе С (вывод 11) равен "1", цепи предустановки отключены. Если на входе С "0", то триггеры устанавливаются в состояния, соответствующие сигналам, поданным на входы D0 , D1 , D2 , D3. Естественно, что сигнал переноса в счетчике К 155 ИЕ 6 возникает на выходе ( 9) при состоянии счетчика 1001 и поступлении следующего счетного импульса.