
- •Лекция 1
- •Раздел 1. Совместная работа цифровых элементов в составе узлов и устройств
- •Тема 1.1. Типы выходных каскадов. В данной лекции затронуты следующие вопросы:
- •Логические функции и логические элементы. Основные понятия
- •Представление информации физическими сигналами.
- •Логические функции.
- •Литература
- •Лекция 2
- •Тема 1.2. Цепи питания. Согласование связей. В данной лекции затронуты следующие вопросы:
- •Законы алгебры логики
- •Произвольные функции и логические схемы
- •Литература
- •Лекция 3
- •Тема 1.3. Элементы задержки. Формирователи импульсов.
- •В данной лекции затронуты следующие вопросы:
- •Элементы задержки. Формирователи импульсов. Генераторы одиночных импульсов. Кварцевый генератор импульсов. Расчет параметров.
- •Минимизация функций
- •Литература
- •Лекция 4
- •Тема 1.4. Элементы индикации. Оптоэлектронные развязки. В данной лекции затронуты следующие вопросы:
- •Интегральные логические элементы.
- •Характеристики лэ.
- •Серии лэ.
- •Правила схемного включения лэ.
- •Лэ с тремя состояниями выхода
- •Литература
- •Лекция 5
- •Раздел 2. Синхронизация в цифровых устройствах.
- •Тема 2.1. Синхронизация в цифровых устройствах.
- •В данной лекции затронуты следующие вопросы:
- •Цифровые устройства со статическим и динамическим управлением. Понятие «гонок» в цифровых устройствах и методы их устранения. Устройства синхронизации.
- •Этапы построения (синтеза) комбинационной схемы.
- •Литература
- •Лекция 6
- •Тема 2.2. Риски сбоя в комбинационных и последовательных схемах.
- •В данной лекции затронуты следующие вопросы:
- •Понятие комбинационных и последовательных схем. Риски сбоя в комбинационных и последовательных схемах. Понятие «гонок» в цифровых устройствах и методы их устранения.
- •Литература
- •Лекция 7
- •Раздел 3. Функциональные узлы комбинационного типа.
- •Тема 3.1. Дешифраторы. Шифраторы. В данной лекции затронуты следующие вопросы:
- •Типовые комбинационные устройства
- •Преобразователи кодов (пк)
- •Дешифраторы.
- •Шифраторы
- •Преобразование произвольных кодов.
- •Литература
- •Лекция 8
- •Тема 3.2. Мультиплексоры. Демультиплексоры. В данной лекции затронуты следующие вопросы:
- •Коммутаторы Мультиплексоры
- •Демультиплексоры.
- •Литература
- •Лекция 9
- •Тема 3.3. Сумматоры. В данной лекции затронуты следующие вопросы:
- •Арифметические устройства.
- •Сумматоры.
- •Цифровые компараторы.
- •Контроль четности
- •Литература
- •Лекция 10
- •Раздел 4. Функциональные узлы последовательного типа.
- •Тема 4.1. Регистры. В данной лекции затронуты следующие вопросы:
- •Последовательностные схемы
- •Триггеры
- •Двухступенчатые триггеры
- •Асинхронные входы триггеров
- •Регистры Параллельные регистры
- •Регистровая память
- •Сдвигающие регистры
- •Литература
- •Лекция 11
- •Тема 4.2. Счетчики. Распределители. В данной лекции затронуты следующие вопросы:
- •Счетчики Общие понятия
- •Асинхронные счетчики
- •Синхронные счетчики
- •Интегральные счетчики.
- •Счетчики с различными коэффициентами пересчета.
- •Литература
- •Лекция 12
- •Раздел 5. Бис/сбис с программируемой структурой.
- •Тема 5.1. Программируемые логические матрицы. В данной лекции затронуты следующие вопросы:
- •Программируемые логические матрицы
- •Литература
- •Лекция 13
- •Тема 5.2. Программируемая матричная логика. В данной лекции затронуты следующие вопросы:
- •Классификация логических микросхем программируемой логики
- •Общие (системные) свойства микросхем программируемой логики
- •Литература
- •Лекция 14
- •Тема 5.3. Базовые матричные кристаллы. В данной лекции затронуты следующие вопросы:
- •Базовые матричные кристаллы (вентильные матрицы)
- •Литература
- •Лекция 15
- •Тема 5.4. Оперативно перестраиваемые fpga. В данной лекции затронуты следующие вопросы:
- •Программируемые пользователем вентильные матрицы (fpga) Xilinx Spartan-3e открывают новые перспективы для jvc gy-hd250
- •Литература
- •Лекция 16
- •Раздел 6. Схемотехника зу.
- •Тема 6.1. Статические и динамические зу. В данной лекции затронуты следующие вопросы:
- •Оперативные запоминающие устройства (озу) Разновидности оперативной памяти
- •Построение блоков озу
- •Параметры пзу.
- •Применение пзу для реализации произвольных логических функций.
- •Литература
- •Лекция 17
- •Тема 6.2. Масочные и прожигаемые зу. В данной лекции затронуты следующие вопросы:
- •Зу с одномерной адресацией.
- •Литература
- •Лекция 18
- •Тема 6.3. Зу на основе бис/сбис. В данной лекции затронуты следующие вопросы:
- •Построение блоков памяти на бис пзу.
- •Литература
- •Лекция 19
- •Раздел 7. Микропроцессорные комплекты бис/сбис. В данной лекции затронуты следующие вопросы:
- •Литература
- •Лекция 20
- •Раздел 8. Автоматизация функционально-логического этапа цифровых узлов и устройств. В данной лекции затронуты следующие вопросы:
- •Логические и эксплуатационные основы средних и больших интегральных схем
- •Литература
Двухступенчатые триггеры
На рис. 4.4, а показана схема, состоящая из двух последовательно включенных синхронных RS-триггеров, первый из которых называется ведущим или М-триггером (от master - хозяин), а второй—ведомым или S-триггером (от slave - раб). Благодаря общему синхросигналу С вся схема функционирует как единое целое и называется двухступенчатым или MS-триггером . Из временной диаграммы (рис. 4.4, б) видно, что информация, задаваемая уровнями на входах S и R, по фронту С-сигнала принимается в М-триггер, но в течение всего •времени, пока С-сигнал равен 1, не проходит в S-триггер, поскольку его входные конъюнкторы 5 и 6 в это время перекрыты инверсией С-сигнала. Они откроются лишь при С==1, т.е. на спаде С-сигнала, и только тогда S-триггер примет состояние М-триггера. Сказанное иллюстрирует очень важное отличие MS-триггера от триггера-защелки: MS-триггер, собранный по схеме рис.4.4,а, непрозрачен по управляющим R и S входам ни при С=0, ни при С=1. Каждая ступень его сама по себе прозрачна, но включены ступени последовательно, и какая-нибудь одна из них всегда оказывается запертой - или синхросигналом, или его отсутствием. Таким образом, в этом MS-триггере при С=1 (и тем более при С=0) никакое изменение на управляющем входе не может само по себе, без переключения С-сигнала, проникнуть на выход. Триггер может изменить состояние выхода только по спаду С-сигнала. В зарубежной литературе непрозрачные триггеры называют flip-flop в отличие от прозрачных D-триггеров, за которыми укрепился термин latch.
а) б)
Рис. 4.4; Двухступенчатый RS-триггер
Управляющие S- и R-сигналы могут обновляться по спаду того же синхроимпульса, который управляет триггером, и триггер при этом всегда будет воспринимать лишь предыдущее, еще не обновленное состояние S и R сигналов. На этом свойстве держится вся идеология однофазной синхронизации.
Свойство непрозрачности MS-триггера использовано для построения широко применяемого JK-триггера, схема которого показана на рис.4.5,а
Рис.4.5. JK – триггер
JK-триггер-это непрозрачный триггер, выходы которого петлями обратных связей накрест заведены на входные конъюнкторы 1 и 2. Внешние входы самого триггера при этом принято называть уже не S и R, а J и К.
При J= K=0 С-сигнал не может открыть входные элементы 1 и 2, и триггер находится в режиме хранения. При J=1, К=0 синхросигналом может быть открыт лишь элемент 1 и только при условии, что перед поступлением С-сигнала на выходе триггера был 0 (Q=0). Тогда по спаду синхросигнала триггер переключится в «1». Если же триггер до синхросигнала был в «1», то он так и останется в «1». Таким образом, J-вход выполняет функции синхронизированного S-входа. В силу симметрии схемы легко показать, что K-вход выполняет функции синхронизированного R-входа, переводя триггер в «0». Таким образом, при разных уровнях на J- и К-входах JK-триггер ведет себя как синхронный непрозрачный RS-триггер.
Существенно отличным от RS-триггера является поведение JK-триггера при J=K=1. Для RS-триггера такое сотояние входов запрещено. Диаграмма работы JK-триггера в этом режиме показана на рис. 4.5,б. При любом состоянии триггера сигналы обратной связи открывают для С-сигнала именно тот входной конъюнктор, пройдя через который, С-сигнал переведет триггер в противоположное состояние. Таким образом, при J=K=1 по спаду каждого С-сигнала JK-триггер меняет состояние своих выходов на противоположное. Это так называемый счетный режим, или Т-режим работы триггера (от toggle—кувыркаться).
Кратко функционирование JK-триггера описывается табл. 4.1. Новым символом в таблице является символ спада синхроимпульса, который изображается направленной вниз стрелкой. Таблица отражает тот факт, что для JK-триггера переключающей сущностью синхроимпульса является не уровень его, а перепад уровня.
Таблица 4.1.
Режим |
С |
Jt |
Kt |
Qt+1 |
Хранение |
X |
0 |
0 |
|
Сброс |
|
0 |
1 |
0 |
Установка |
|
1 |
0 |
1 |
Инверсия предыдущего состояния |
|
1 |
1 |
|
С
Счетный