Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Методичка задачи по физзике.doc
Скачиваний:
14
Добавлен:
19.08.2019
Размер:
3 Mб
Скачать

Физические основы термодинамики

Первое начало термодинамики:

,

где Q – количество теплоты, сообщенное системе или отданное ею; ∆U – изменение её внутренней энергии; А – работа системы, совершаемая против внешних сил.

Работа расширения газа:

(в общем случае);

(при изобарном процессе);

(при изотермическом процессе);

, или (при адиабатном процессе), где – показатель адиабаты.

Уравнения Пуассона, связывающие параметры идеального газа при адиабатном процессе:

, ;

.

Термический кпд цикла:

,

где Q1 – теплота, полученная рабочим телом от теплоотдатчика; Q2 – теплота, переданная рабочим телом теплоприемнику.

Термический кпд цикла Карно:

,

где Т1 и Т2 – термодинамические температуры теплоотдатчика и теплоприем-ника.

Изменение энтропии –

,

где А и В – пределы интегрирования, соответствующие начальному и конечному состояниям системы. Так как процесс равновесный, то интегрирование не зависит от формы пути.

Формула Больцмана:

,

где s – энтропия системы; W – термодинамическая вероятность ее состояния; k – постоянная Больцмана.

Электростатика. Постоянный ток.

Закон Кулона:

,

где F – сила взаимодействия двух точечных зарядов q1 и q2; r – расстояние между зарядами;  - диэлектрическая проницаемость среды; 0 - электрическая постоянная

.

Закон сохранения заряда:

,

где – алгебраическая сумма зарядов, входящих в изолированную систему; n – число зарядов.

Напряженность и потенциал электростатического поля:

; , или ,

где – сила, действующая на точечный положительный заряд q0, помещенный в данную точку поля; П – потенциальная энергия заряда; А- работа, затраченная на перемещение заряда q0 из данной точки поля в бесконечность.

Поток вектора напряженности электрического поля:

а) через произвольную поверхность S, помещенную в неоднородное поле:

, или ,

где  – угол между вектором напряженности и нормалью к элементу поверхности; dS – площадь элемента поверхности; En – проекция вектора напряженности на нормаль;

б) через плоскую поверхность, помещенную в однородное электрическое поле:

.

Поток вектора напряженности через замкнутую поверхность –

(интегрирование ведется по всей поверхности).

Теорема Остроградского-Гаусса. Поток вектора напряженности через любую замкнутую поверхность, охватывающую заряды q1, q2, …, qn, –

,

где – алгебраическая сумма зарядов, заключенных внутри замкнутой поверхности; n – число зарядов.

Напряженность электростатического поля, создаваемого точечным зарядом q на расстоянии r от заряда, –

.

Напряженность электрического поля, создаваемого сферой, имеющей радиус R и несущей заряд q, на расстоянии r от центра сферы такова:

внутри сферы (r R) Е=0;

на поверхности сферы (r=R) ;

вне сферы (r  R) .

Принцип суперпозиции (наложения) электростатических полей, согласно которому напряженность результирующего поля, созданного двумя (и более) точечными зарядами, равна векторной (геометрической) сумме напряженностей складываемых полей, выражается формулой

.

В случае двух электрических полей с напряженностями и абсолютное значение вектора напряженности составляет

,

где  - угол между векторами и .

Напряженность поля, создаваемого бесконечно длинной и равномерно заряженной нитью (или цилиндром) на расстоянии r от ее оси, –

,

где  - линейная плотность заряда.

Линейная плотность заряда есть величина, равная его отношению к длине нити (цилиндра):

.

Напряженность поля, создаваемого бесконечной равномерно заряженной плоскостью, –

,

где  - поверхностная плотность заряда.

Поверхностная плотность заряда есть величина, равная отношению заряда, распределенного по поверхности, к ее площади:

.

Напряженность поля, создаваемого двумя бесконечными и параллельными плоскостями, заряженными равномерно и разноименно, с одинаковой по абсолютному значению поверхностной плотностью  заряда (поле плоского конденсатора) –

.

Приведенная формула справедлива при вычислении напряженности поля между пластинами плоского конденсатора (в его средней части) только в том случае, если расстояние между пластинами намного меньше линейных размеров пластин конденсатора.

Электрическое смещение связано с напряженностью электрического поля соотношением

,

которое справедливо только для изотропных диэлектриков.

Потенциал электрического поля есть величина, равная отношению потенциальной энергии и точечного положительного заряда, помещенного в данную точку поля:

.

Иначе говоря, потенциал электрического поля есть величина, равная отношению работы сил поля по перемещению точечного положительного заряда из данной точки поля в бесконечность к величине этого заряда:

.

Потенциал электрического поля в бесконечности условно принят равным нулю.

Потенциал электрического поля, создаваемый точечным зарядом q на

расстоянии r от заряда, –

.

Потенциал электрического поля, создаваемый металлической сферой, имеющей радиус R и несущей заряд q, на расстоянии r от центра сферы таков:

внутри сферы (r  R) ;

на поверхности сферы (r = R) ;

вне сферы (r  R) .

Во всех формулах, приведенных для потенциала заряженной сферы,  есть диэлектрическая проницаемость однородного безграничного диэлектрика, окружающего сферу.

Потенциал электрического поля, образуемого системой n точечных зарядов в данной точке в соответствии с принципом суперпозиции электрических полей, равен алгебраической сумме потенциалов , создаваемых отдельными точечными зарядами :

.

Энергия W взаимодействия системы точечных зарядов определяется работой, которую эта система может совершить при удалении их относительно друг друга в бесконечность, и выражается формулой

,

где - потенциал поля, создаваемый всеми (n-1) зарядами (за исключением i-го) в точке, где находится заряд .

Потенциал связан с напряженностью электрического поля соотношением

.

В случае электрического поля, обладающего сферической симметрией, эта связь выражается формулой

,

или в скалярной форме

.

В случае однородного поля, т.е. поля, напряженность которого в каждой его точке одинакова как по абсолютному значению, так и по направлению, –

,

где 1 и 2 – потенциалы точек двух эквипотенциальных поверхностей; d - расстояние между этими поверхностями вдоль электрической силовой линии.

Работа, совершаемая электрическим полем при перемещении точечного заряда q из одной точки поля, имеющей потенциал 1, в другую, имеющую потенциал 2, равна

, или ,

где E – проекция вектора на направление перемещения; - перемещение.

В случае однородного поля последняя формула принимает вид

,

где – перемещение;  - угол между направлениями вектора и перемеще-ния .

Диполь есть система двух точечных (равных по абсолютному значению и противоположных по знаку) зарядов, находящихся на некотором расстоянии друг от друга.

Электрический момент диполя есть вектор, направленный от отрицательного заряда к положительному, равный произведению заряда на вектор , проведенный от отрицательного заряда к положительному, и называемый плечом диполя, т.е.

.

Диполь называется точечным, если его плечо намного меньше расстояния r от центра диполя до точки, в которой нас интересует действие диполя (  r), см. рис. 1.

Рис. 1

Напряженность поля точечного диполя:

,

где р – электрический момент диполя; r – абсолютное значение радиус-вектора, проведенного от центра диполя к точке, напряженность поля в которой нас интересует;  - угол между радиус-вектором и плечом диполя.

Напряженность поля точечного диполя в точке, лежащей на оси диполя

(=0), находится по формуле

;

в точке, лежащей на перпендикуляре к плечу диполя, восстановленном из его середины , – по формуле

.

Потенциал поля точечного диполя в точке, лежащей на оси диполя (=0), составляет

,

а в точке, лежащей на перпендикуляре к плечу диполя, восстановленном из его середины , –

=0.

Напряженность и потенциал неточечного диполя определяются так же как и для системы зарядов.

Механический момент, действующий на диполь с электрическим моментом р, помещенный в однородное электрическое поле с напряженностью Е, –

, или ,

где  - угол между направлениями векторов и .

Электроемкость уединенного проводника или конденсатора –

,

где q – заряд, сообщенный проводнику;  - изменение потенциала, вызванное этим зарядом.

Электроемкость уединенной проводящей сферы радиусом R, находящейся в бесконечной среде с диэлектрической проницаемостью , –

.

Если сфера полая и заполнена диэлектриком, то ее электроемкость при этом не изменяется.

Электроемкость плоского конденсатора:

,

где S – площадь каждой пластины конденсатора; d – расстояние между пластинами;  - диэлектрическая проницаемость диэлектрика, заполняющего пространство между пластинами.

Электроемкость плоского конденсатора, заполненного n слоями диэлектрика толщиной di и диэлектрической проницаемостью i каждый (слоистый конденсатор), составляет

.

Электроемкость сферического конденсатора (две концентрические сферы радиусом R1 и R2 , пространство между которыми заполнено диэлектриком с диэлектрической проницаемостью ) находится так:

.

Электроемкость последовательно соединенных конденсаторов составляет:

в общем случае –

,

где n – число конденсаторов;

в случае двух конденсаторов –

;

в случае n одинаковых конденсаторов с электроемкостью С1 каждый –

.

Электроемкость параллельно соединенных конденсаторов определяется следующим образом:

в общем случае –

С=С12+…+Сn;

в случае двух конденсаторов –

С= С12;

в случае n одинаковых конденсаторов с электроемкостью С1 каждый –

С=nС1.

Энергия заряженного проводника выражается через заряд q, потенциал  и электроемкость С проводника следующим образом:

.

Энергия заряженного конденсатора –

,

где q – заряд конденсатора; С – электроемкость конденсатора; U – разность потенциалов на его пластинах.