Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Методичка задачи по физзике.doc
Скачиваний:
12
Добавлен:
19.08.2019
Размер:
3 Mб
Скачать

82

Министерство образования и науки РФ

Федеральное государственное автономное образовательное учреждение

высшего профессионального образования

«Сибирский федеральный университет»

Институт фундаментальной подготовки

Кафедра физики – 4

МЕХАНИКА. МОЛЕКУЛЯРНАЯ ФИЗИКА.

ЭЛЕКТРОСТАТИКА. ПОСТОЯННЫЙ ТОК. ЭЛЕКТРОМАГНЕТИЗМ. ОПТИКА. АТОМНАЯ И ЯДЕРНАЯ ФИЗИКА.

Контрольные задания для студентов бакалавров

Красноярск

2012

ВВЕДЕНИЕ

Физика – фундаментальная база для теоретической подготовки инженеров, без овладения которой их успешная деятельность невозможна.

На всех этапах обучения большое значение имеет практическое применение теоретических знаний в процессе решения задач. Это способствует приобщению студентов к самостоятельной творческой работе, учит анализировать изучаемые явления, выделять главные факторы, отвлекаясь от случайных и несущественных деталей.

Задачи, приведенные в методических указаниях, соответствуют программе общего курса физики в техническом вузе и охватывают разделы «Механика», «Колебания и волны», «Молекулярная физика» и «Термодинамика».

В работе отсутствуют сведения, которые при необходимости могут быть найдены в учебных пособиях по курсу общей физики (см. библиографический список). Поэтому вначале помещен краткий перечень формул и законов, необходимых для решения задач.

В приложении приведены основные справочные данные, дополняющие условия задач. Номера вариантов, которые должен выполнить студент, указывает преподаватель.

Часть 1

ОСНОВНЫЕ ФОРМУЛЫ И ЗАКОНЫ

Кинематика

Положение материальной точки в пространстве задаётся радиус-вектором :

,

где – единичные векторы направлений (орты); x, y, z – координаты точки.

Кинематические уравнения движения (в координатной форме) таковы:

; ; ,

где t – время.

Средняя скорость –

< >= ,

где – перемещение материальной точки за интервал времени .

Средняя путевая скорость –

< >= ,

где - путь, пройденный точкой за интервал времени .

Мгновенная скорость –

,

где – проекции скорости на оси координат.

Абсолютное значение скорости –

.

Ускорение –

,

где ; ; – проекции ускорения на оси координат.

Абсолютное значение ускорения –

.

При криволинейном движении ускорение можно представить как сумму нормальной и тангенциальной составляющих, см. рис 1

Рис. 1.

Абсолютное значение этих ускорений –

; ; ,

где R – радиус кривизны в данной точке траектории.

Кинематическое уравнение равнопеременного движения материальной точки вдоль оси x:

,

где - начальная координата; t – время.

При равномерном движении

; = 0.

Кинематическое уравнение равнопеременного движения (a=const) вдоль оси x :

где – начальная скорость; t – время.

Скорость точки при равномерном движении :

.

Кинематическое уравнение вращательного движения:

.

Средняя угловая скорость –

,

где - изменение угла поворота за интервал времени .

Мгновенная угловая скорость –

.

Угловое ускорение –

.

Кинематическое уравнение равномерного вращения –

,

где - угловое перемещение; t – время. При равномерном вращении

и ε=0.

Частота вращения –

, или ,

где N – число оборотов, совершаемых телом за время t; Т – период вращения (время одного полного оборота).

Кинематическое уравнение равнопеременного вращения (ε=const) :

,

где - начальная скорость; t – время.

Угловая скорость тела при равнопеременном вращении :

.

Связь между линейными и угловыми величинами, характеризующими вращение материальной точки, выражается следующими формулами:

(где – угол поворота тела) – длина пути, пройденного точкой по дуге окружности радиусом R;

, – линейная скорость точки;

, – тангенциальное ускорение точки;

– нормальное ускорение точки.

Динамика материальной точки и тела, движущегося поступательно

Уравнение движения материальной точки (второй закон Ньютона)

в векторной форме :

, или ,

где - геометрическая сумма сил, действующих на материальную точку; m – масса; – ускорение; – импульс; n – число сил, действующих на точку;

в координатной (скалярной) форме :

; ; ,

или

; ; ,

где под знаком суммы стоят проекции сил на соответствующие оси координат.

Сила упругости –

,

где k – коэффициент упругости (в случае пружины жесткости); x – абсолютная деформация.

Сила гравитационного взаимодействия –

,

где G – гравитационная постоянная; и - массы взаимодействующих тел, рассматриваемых как материальные точки; r – расстояние между ними.

Сила трения скольжения –

,

где f – коэффициент трения скольжения; N – сила нормального давления.

Значения координат центра масс системы материальных точек –

; ; ,

где – масса - й точки; – координаты точки.

Закон сохранения импульса –

, или ,

где n – число материальных точек или тел, входящих в систему.

Работа, совершаемая постоянной силой, –

, или ,

где – угол между направлениями векторов силы и перемещения .

Работа, совершаемая переменной силой, –

,

причем интегрирование ведётся вдоль траектории, обозначаемой L.

Средняя мощность за интервал времени –

.

Мгновенная мощность –

, или ,

где dA – работа, совершаемая за промежуток времени dt.

Кинетическая энергия материальной точки (или тела, движущегося посту­пательно) –

, или .

Соотношение потенциальной энергии тела и силы, действующей на него в данной точке поля, –

, или ,

где – единичные векторы (орты). В частном случае, когда поле сил обладает сферической симметрией (например, гравитационное), –

.

Потенциальная энергия упругодеформированного тела (сжатой или растянутой пружины) –

.

Потенциальная энергия гравитационного взаимодействия двух материальных точек (или тел) массами и , находящихся на некотором расстоянии друг от друга,-

.

Потенциальная энергия тела, находящегося в однородном поле силы тяжести, –

,

где h – высота нахождения тела над уровнем, принятым за нулевой для отсчёта потенциальной энергии. Эта формула справедлива при условии, что h<<R, где R – радиус Земли.

Закон сохранения энергии в механике выполняется в замкнутой системе, в которой действуют только консервативные силы, и записывается в виде

Применив законы сохранения энергии и импульса в случае прямого центрального удара шаров, получаем формулу скорости абсолютно неупругих шаров

и формулы скорости абсолютно упругих шаров после удара:

,

,

где и – скорости шаров до удара; и – их массы.