Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
схемы компромиссов.doc
Скачиваний:
8
Добавлен:
16.08.2019
Размер:
158.21 Кб
Скачать

Общая постановка задачи принятия решения.

Пусть эффективность выбора того или иного решения определяется некоторым критерием F, допускающим количественное представление. В общем случае все факторы, от которых зависит эффективность выбора, можно разбить на две группы:

а) контролируемые (управляемые) факторы, выбор которых определяется лицами, принимающими решения. Обозначим эти факторы X1,X2,…,XL.

б) неконтролируемые (неуправляемые) факторы, характеризующие условия, в которых осуществляется выбор и на которые лица, принимающие решения, влиять не могут. В состав неконтролируемых факторов может входить и время t. Неконтролируемые факторы в зависимости от информированности о них подразделяют на три подгруппы:

в) детерминированные неконтролируемые факторы – неслучайные фиксированные величины, значения которых полностью известны, A1,A 2,…, AP.

г) стохастичеcкие неконтролируемые факторы – случайные величины и процессы с известными законами распределений, Y1,Y 2,…, Yg.

д) неопределённые неконтролируемые факторы, для каждого из которых известна только область, внутри которой находится закон распределения, значения неопределённых факторов неизвестны в момент принятия решения, Z1,Z 2,…, ZZ.

В соответствии с выделенными факторами критерий оптимальности можно представить в виде:

F=F(X1,X2,…,XL, A1,A 2,…, A P, Y1,Y 2,…, Yg, Z1,Z 2,…, ZZ, t)

Значения контролируемых факторов обычно ограничены рядом естественных причин, например, ограниченностью располагаемых ресурсов. То есть определены (имеются) области x1, x2,…, xL пространства, внутри которых расположены возможные (допустимые) значения факторов X1,X2,…,XL. Аналогично могут быть ограничены и области возможных значений неконтролируемых факторов. Величины X, A, Y, Z в общем случае могут быть скалярами , векторами, матрицами.

Поскольку критерий оптимальности есть количественная мера степени достижения цели управления, математически цель управления выражается в стремлении к максимально возможному увеличению (или уменьшению) значения критерия F, что можно записать в виде: Fàmax (или min).

Средством достижения этой цели является соответствующий выбор управлений X1,X2,…,XL из областей x1, x2,…, xL их допустимых значений. Таким образом, общая постановка задачи принятия решений может быть сформулирована так: при заданных значениях и характеристиках фиксированных неконтролируемых факторов A 2,…, AP, Y1,Y 2,…, Yg с учётом неопределённых факторов Z1,Z 2,…, ZZ найти оптимальные значения X1опт,X2опт,…,XLопт из областей x1, x2,…, xL их допустимых значений, которые по возможности обращали бы в максимум (минимум) критерий оптимальности F.

Классификация задач принятия решений.

Задачи принятия решений классифицируют по трём признакам:

а) по количеству целей управления и соответствующих им критериев оптимальности ЗПР делят на одноцелевые или однокритериальные (скалярные) и многоцелевые или многокритериальные (векторные);

б) по наличию или отсутствию зависимости критерия оптимальности и ограничений от времени ЗПР делят на статические (не зависящие от времени) и динамические (зависящие от времени).

Однокритериальные задачи принятия решений.

Пусть необходимо отображать некоторое количество информационных моделей, например, картографическую информацию. Для отображения любой из моделей всегда требуется n различных задач З1,З2,…,ЗN(отображение символов, отображение векторов, поворот и перемещение изображения, масштабирование и т.п.). Все задачи взаимно независимы. Для решения этих задач могут быть использованы m различных микропроцессоров M1,M2,…,MM. В течение времени t микропроцессор Mjможет решить aij задач типа Зi (i=1,…,n; j=1,…,m), то есть решить задачу Зiнесколько раз по одному и тому же алгоритму, но для различных исходных данных.

Информационную модель можно отображать только в том случае, если она содержит полный набор результатов решения всех задач З1,З2,…,ЗN. Требуется распределить задачи по микропроцессорам так, чтобы число информационных моделей , синтезированных за время t, было максимально. Иначе говоря, необходимо указать, какую часть времени t микропроцессор Mj должен занимать решением задачи Зi. Обозначим эту величину через xij (если эта задача не будет решаться на данном микропроцессоре, то xij=0). Очевидно, что общее время занятости каждого микропроцессора решением всех задач не должно превышать общего запаса времени t, ”доля”-единицы. Таким образом, имеем следующие ограничительные условия:

Общее количество решений Ni задачи Зi, полученных всеми микропроцессорами вместе:

Так как информационная модель может быть синтезирована лишь из полного набора результатов решения всех задач, то количество информационных моделей F будет определяться минимальным из числа Ni.

Итак, имеем следующую математическую модель: требуется найти такие xij,чтобы обращалась в минимум функция F:

при