
- •Неорганические и органические вещества растительной клетки
- •2. Общая морфология растительной клетки
- •Биосинтез белка в клетке
- •8. Поглощение воды растением
- •10. Лист как орган транспирации
- •13.Водный баланс растений
- •14.Особенности анатомии и морфологии листа как органа фотосинтеза
- •15. Строение пластид
- •Световая фаза фотосинтеза
- •Внутренние факторы, влияющие на фотосинтез
- •20.Зависимость фотосинтеза от условий внешней среды
- •21. Связь фотосинтеза с продуктивностью растений
- •26. Строение электрон-транспортной цепи митохондрий
- •Дыхание и обмен веществ в растительной клетке
- •28. Интенсивность дыхания
- •Зависимость дыхания от внешних факторов
- •Влияние внешних условий на жизнедеятельность микроорганизмов
- •31Участие микроорганизмов в биологическом круговороте углерода и азота
- •32Необходимые макро- и микроэлементы, их содержание в растениях
- •33Поглощение элементов питания растениями
- •36Усвоение минеральных веществ
- •37Влияние внешних факторов на поглощение и усвоение минеральных элементов
- •38Физиологические основы применения удобрений в лесном и садово-парковом хозяйстве
- •40Превращения органических веществ
- •41. Передвижение органических веществ в растениях
- •42. Понятие об онтогенезе, росте и развитии
- •43. Фитогормоны как факторы регуляции роста и развития растений
- •Особенности роста и дифференцировки клеток. Тотипотентность и детерминация
- •45. Рост органов растений
- •Роль света как источника энергии для роста и как регулятора морфогенеза
- •Ростовые движения растений
- •Виды покоя. Внутренние и внешние условия перехода растений в состояние покоя и выхода из него
- •Покой семян. Факторы нарушения покоя семян. Приемы ускорения прорастания семян и регулирования роста растений
- •Физиология прорастания семян. Внешние условия, необходимые для прорастания семян.
- •Условия перехода к репродуктивному этапу развития. Гормоны цветения
- •52Причины и механизмы старения.
- •Возрастные изменения у растений и их проявления. Причины и механизм старения
- •Понятие об устойчивости и иммунитете
- •Стресс и его физиологические основы
- •55Жаростойкость и засухоустойчивость
- •58. Газоустойчивость
- •Растений
- •Устойчивость растений к патогенным микроорганизмам
Световая фаза фотосинтеза
Сущность световой фазы фотосинтеза состоит в поглощении лучистой энергии и ее трансформации в ассимиляционную силу (АТФ и НАДФ-Н), необходимую для восстановления углерода в темновых реакциях. Сложность процессов преобразования световой энергии в химическую требует их строгой мембранной организации. Световая фаза фотосинтеза происходит в гранах хлоропласта.
Пять основных полипептидных комплексов встроены во внутренние мембраны хлоропластов: комплекс фотосистемы I (ФСI), комплекс фотосистемыII (ФСII), светособирающий комплексII(ССКII), цитохромныйb6f-комплекс и АТФ-синтаза (CF0 – CF1-комплекс). Комплексы ФСI, ФСII и ССКII содержат пигменты (хлорофиллы, каротиноиды)
В световом цикле фотосинтеза происходят следующие процессы:1) фотовозбуждение молекул фотосинтетических пигментов; 2) миграция энергии с антенны на реакционный центр; 3) фотоокисление молекулы воды и выделение кислорода; 4) фотовосстановление НАДФ до НАДФ-Н; 5) фотосинтетическое фосфорилирование, образование АТФ.
Физические механизмы процессов поглощения, запасания и миграции энергии молекулами хлорофилла достаточно хорошо изучены.Поглощение фотона (hν) обусловлено переходом системы в различные энергетические состояния.
Запасание поглощенной энергии связано с возникновением электронно-возбужденных состояний пигментов.
Миграция энергии между молекулами пигментов может осуществляться по следующим механизмам. Индуктивно-резонансный механизм (механизм Фёрстера) возможен при условии, когда переход электрона оптически разрешен и обмен энергией осуществляется по экситонному механизму.
Обменно-резонансный механизм миграции энергии Теренина-Декстера имеет место в том случае, когда переход оптически запрещен и диполь при возбуждении пигмента не образуется. Для его осуществления необходим тесный контакт молекул (около 1 нм) с перекрыванием внешних орбиталей. В этих условиях возможен обмен электронами, находящимися как на синглетных, так и на триплетных уровнях.
Структура электрон-транспортной цепи фотосинтеза и характеристика ее компонентов. Электрон-транспортная цепь фотосинтеза включает довольно большое число компонентов, расположенных в мембранных структурах хлоропластов. Практически все компоненты, кроме хинонов, являются белками, содержащими функциональные группы, способные к обратимым окислительно-восстановительным изменениям, и выполняющие функции переносчиков электронов или электронов совместно с протонами.
17. С3-путь. Этот способ ассимиляции СО2, присущий всем растениям, в 1946-1956 гг. был расшифрован американским биохимиком М. Кальвином, в силу чего он получил название цикла Кальвина. Этот цикл, весьма напоминающий обращенный пентозофосфатный путь дыхания, состоит из трех этапов: карбоксилирования, восстановления и регенерации.
Для синтеза одной молекулы глюкозы в цикле Кальвина необходимы 12 NADPH и 18 АТР, которые поставляются в результате фотохимических реакций фотосинтеза.