
- •2 Исходная характеристика научного знания
- •3. Идеальная модель.
- •4. Идеализация
- •5 Обоснованность
- •6 Доказанность
- •7 Методологические регулятивы научного познания
- •8. Понятие метода, методологии и методики
- •9. Наблюдение и специфика его применения в современном естествознании
- •10. Метод эксперимента
- •11 Гипотеза как форма развития естествознания
- •12 Интеграция фундаментальных и прикладных исследований
- •13. Преемственность в развитии научных теорий
- •14 Математизация естествознания
- •15 Единство эволюционного и революционного путей развития естествознания
- •16. Классическая (ньютоновская) механика
- •17. Релятивистская (эйнштейновская) механика
- •18. Квантовая механика
- •3. Уравнение Шредингера.
- •19.Принцип абсолютности свойств. Количественная относительность свойств. Принцип дополнительности.
- •20. Эволюция пространственно временных представлений о мире
- •21. Взаимодействие
- •22. Гравитационное взаимодействие
- •23. Электромагнитное взаимодействие
- •24. Сильное взаимодействие
- •25. Слабое взаимодействие
- •26. Структурная физика. Корпускулярный подход к описанию и объяснению природы. Редукционизм
- •27. Статистическая физика. Динамические и статистические закономерности
- •28. Понятие состояния
- •29. Законы сохранения
- •30. Корпускулярный подход к описанию и объяснению природы.
- •32. Основные представления о химии как науке
- •Энергетика химических процессов
- •Реакционная способность веществ
- •33.Специфика организации живого
- •34. Молекулярно-генетический уровень.
- •Нуклеиновые кислоты. Строение и функции
- •Линейная днк
- •35 Онтогенетический, популяционно-видовой и биогеоценотический уровни организации живого.
- •36. Принципы эволюции, воспроизводства и развития живых систем
- •37. Возникновение живой материи
- •39. Биосфера и ее структура
- •38. Человек: физиология, здоровье, эмоции, творчество и работоспособность
- •45. Антропный принцип
- •50. Рациональность. Суть научной рациональности.
- •51. Классический тип научной рациональности
19.Принцип абсолютности свойств. Количественная относительность свойств. Принцип дополнительности.
Развитие механики привело к изменению представлений о физических свойствах объектов.
Классическая физика считала свойства, обнаруживаемые при измерении, присущими объекту и только ему (принцип абсолютности свойств). Напомним, что физические свойства объекта характеризуются качественно и количественно. Качественная характеристика свойства - это его сущность (например, скорость, масса, энергия и т.д.). Классическая физика исходила из того, что средства познания на изучаемые объекты не влияют. Для различных типов механических задач средством познания является система отсчета. Без ее введения нельзя корректно ни сформулировать, ни решить механическую задачу. Если свойства объекта ни по качественной, ни по количественной характеристике не зависят от системы отсчета, то они называются абсолютными. Так, какую бы систему отсчета для решения конкретной механической задачи мы не взяли, в каждой из них будут проявляться качественно и количественно масса объекта, сила, действующая на объект, ускорение, скорость.
Если же свойства объекта зависят от системы отсчета, то их принято считать относительными. Классическая физика знала лишь одну такую величину - скорость объекта по количественной характеристике. Это означало, что бессмысленно говорить, что объект движется с такой-то скоростью, не указывая систему отсчета: в разных системах отсчета количественное значение механической скорости объекта будет различно. Все же остальные свойства объекта были абсолютными и по качественной, и по количественной характеристикам.
Уже теория относительности вскрыла количественную относительность таких свойств, как длина, время жизни, масса. Количественная величина этих свойств зависит не только от самого объекта, но и от системы отсчета. Отсюда следовало, что количественная определенность свойств объекта должна быть отнесена не к самому объекту, а к системе: объект + система отсчета. Но носителем качественной определенности свойств по-прежнему оставался сам объект.
Квантовая теория пошла дальше в этом направлении. Она выдвинула идею дополнительности. Принцип дополнительности сформулировал Н. Бор. Его суть: получение экспериментальной информации об одних физических величинах, описывающих микрообъекты, неизбежно связано с потерей информации о некоторых других величинах. Такими взаимно дополнительными величинами являются, например, координата частицы и ее скорость (импульс).
С физической точки зрения принцип дополнительности объясняют влиянием измерительного прибора, который всегда являлся макроскопическим объектом, на состояние микрообъекта. При точном измерении одной из дополнительных величин, например, координаты частицы, с помощью соответствующего прибора другая величина - импульс в результате взаимодействия частицы с прибором претерпевает такое изменение, что ее последующее измерение вообще теряет смысл.
Фактически принцип дополнительности отражает невозможность точно описать объекты микромира с помощью понятий классической физики.
В классической механике описывать состояние частицы с помощью координаты и импульса можно потому, что в макромире положение и скорость движущейся частицы действительно имеют в каждый момент времени определенные значения, которые могут быть измерены на опыте. В микромире это оказывается невозможным из-за двойственной, корпускулярно-волновой природы микрообъектов. Рассмотрим пример, поясняющий принцип дополнительности.
При рассеянии микрочастиц на кристалле наблюдается дифракционная картина. Она обусловлена волновыми свойствами частиц. По этой дифракционной картине можно рассчитать длину волны микрочастицы, а значит, и ее скорость. Однако при этом положение отдельной частицы будет неопределенным. Если же попытаться каким-либо способом уточнить, на какое место фотопластинки попала определенная частица, то дифракционная картина пропадает. Это означает, что о ее скорости уже ничего сказать нельзя.
Таким образом, существуют две взаимно дополнительные картины при описании объекта - пространственно-временная и импульсно-энергетическая.
Принцип дополнительности приводит к неизбежному выводу, что свойства объекта необходимо рассматривать как характеристику потенциальных возможностей объекта, которые реализуются только при наличии строго определенного второго объекта (в процессе измерения - прибора), взаимодействующего с первым.