- •Isbn 5-89502-310-х (мпси) isbn 5-89349-361-3 (Флинта)
- •Глава 1
- •Глава 2
- •Глава 3
- •Глава 9
- •Глава 10
- •Глава 12
- •Глава 13
- •Глава 1 понятие измерения
- •1.1. Измерительные шкалы
- •1.2. Номинативная шкала (шкала наименований)
- •Глава 1. Понятие измерения
- •1.3. Порядковая (ранговая, ординарная) шкала
- •1.3.2. Проверка правильности ранжирования
- •1.3.3. Случай одинаковых рангов
- •1.5. Шкала отношений
- •Глава 2
- •2.1. Полное исследование
- •2.2. Выборочное исследование
- •2.3. Зависимые и независимые выборки
- •2.4. Требования к выборке
- •2.5. Репрезентативность выборки
- •2.6. Формирование и объем репрезентативной выборки
- •Глава 3 формы учета результатов измерений
- •3.1. Таблицы
- •3.1. Таблицы
- •3.2. Статистические ряды
- •3.3. Понятие распределения и гистограммы
- •Глава 3. Формы учета результатов измерений
- •Глава 4
- •4.1. Мода
- •4.2. Медиана
- •4.3. Среднее арифметическое
- •4.4. Разброс выборки
- •4.5. Дисперсия
- •4.6. Степень свободы
- •4.7. Понятие нормального распределения
- •Глава 5
- •5.1. Проверка статистических гипотез
- •5.2. Нулевая и альтернативная гипотезы
- •5.3. Понятие уровня статистической значимости
- •5.4. Этапы принятия статистического решения
- •5.5, Классификация психологических задач, решаемых с помощью статистических методов
- •Глава 6 статистические критерии различий
- •6.1.1. Параметрические и непараметрические критерии
- •6.1.2. Рекомендации к выбору критерия различий
- •6.2. Непараметрические критерии для связных
- •6.2.1. Критерий знаков g
- •6.2.3. Критерий Фридмана
- •6.2.4. Критерий Пейджа
- •6.2.5. Критерий Макнамары
- •Глава 7
- •7.1. Критерий u Вилкоксона—Манна—Уитни
- •7.1.1. Первый способ расчета по критерию u
- •7.1.2. Второй способ расчета по критерию u
- •7.2. Критерий q Розенбаума
- •Глава 8
- •8.1. Критерий хи-квадрат
- •8.1.1. Сравнение эмпирического распределения с теоретическим
- •8.1.2. Сравнение двух экспериментальных распределений
- •8.1.3. Использование критерия хи-квадрат для сравнения показателей внутри одной выборки
- •8.2, Критерий Колмогорова-Смирнова
- •8.3. Критерий Фишера — φ
- •8.3.1. Сравнение двух выборок по качественно определенному признаку
- •8.3.2. Сравнение двух выборок по количественно определенному признаку
- •Глава 9
- •9.1.1. Случай несвязных выборок
- •9.1.2. Случай связных выборок
- •Глава 10 введение в дисперсионный анализ anova
- •10.1. Однофакторный дисперсионный анализ
- •10.2.1. Критерий Линка и Уоллеса
- •10.2.2. Критерий Немени
- •Глава 11 корреляционный анализ
- •11.1. Понятие корреляционной связи
- •11.2. Коэффициент корреляции Пирсона
- •11.3. Коэффициент корреляции рангов Спирмена
- •11.3.1. Случай одинаковых (равных) рангов
- •11.4. Расчет уровней значимости коэффициентов корреляции
- •11.5.1. Второй способ вычисления коэффициента «φ»
- •11.7. Бисериальный коэффициент корреляции
- •11.8. Рангово-бисериальный коэффициент корреляции
- •11.9. Корреляционное отношение Пирсона η
- •11.10. Множественная корреляция
- •11.11. Частная корреляция
- •Глава 12
- •12.1. Линейная регрессия
- •12.2. Множественная линейная регрессия
- •12.3. Оценка уровней значимости коэффициентов регрессионного уравнения
- •12.4. Нелинейная регрессия
- •Глава 13 факторный анализ
- •13.1. Основные понятия факторного анализа
- •13. Факторный анализ
- •Глава 13. Факторный анализ
- •13.1. Основные понятия факторного анализа
- •13.2. Условия применения факторного анализа
- •13.3. Приемы для определения числа факторов
- •13.5. Использование факторного анализа в психологии
- •Глава I. Теоретические основы агрессивности и тревожности личности.
11.8. Рангово-бисериальный коэффициент корреляции
В тех случаях, когда одна переменная измеряется в дихотомической шкале (переменная X), а другая в ранговой шкале (переменная У), используется рангово-бисериальный коэффициент корреляции. Мы помним, что переменная X, измеренная в дихотомической шкале, принимает только два значения (кода) 0 и 1. Особо подчеркнем: несмотря на то что этот коэффициент изменяется в диапазоне от -1 до +1, его знак для интерпретации результатов не имеет значения. Это еще одно исключение из общего правила.
Расчет этого коэффициента производится по формуле:
(11.17)
где Х1 -- средний ранг по тем элементам переменной Y, которым соответствует код (признак) 1 в переменной X;
236
Х0 -- средний ранг по тем элементам переменной Y, которым соответствует код (признак) 0 в переменной X;
N— общее количество элементов в переменной X.
Решим следующий пример с использованием рангово-бисе-риального коэффициента корреляции.
Задача 11.8. Психолог проверяет гипотезу о том, существуют ли тендерные различия в вербальных способностях.
Решение. Для решения данной задачи 15 подростков разного пола были проранжированы учителем литературы по степени выраженности вербальных способностей. Полученные данные представим сразу в виде таблицы 11.11:
Таблица 11.11
№ испытуемого п/п |
Пол |
Ранги вербальных способностей |
1 |
1 |
1 |
2 |
0 |
10 |
3 |
1 |
6 |
4 |
1 |
9 |
5 |
0 |
15 |
6 |
1 |
7 |
7 |
0 |
8 |
8 |
0 |
13 |
9 |
1 |
4 |
10 |
1 |
3 |
11 |
1 |
5 |
12 |
0 |
11 |
13 |
1 |
12 |
14 |
1 |
2 |
15 |
0 |
14 |
237
В данном случае правильность ранжирования можно не проверять, поскольку нет совпадающих рангов и ранжирование проводится по порядку.
В таблице 11.11 юноши обозначены кодом 1, а девушки 0. В нашем случае юношей 9 человек, а девушек 6.
Прежде чем произвести расчет по формуле (11.17), найдем необходимые величины т.е. средние значения рангов отдельно для юношей и для девушек.
Вычисляем R3Mnrt> по формуле (11.17):
Проверим значимость полученного коэффициента корреляции с помощью формулы (11.9); при k = п-1- 15-2= 13:
Число степеней свободы в нашем случае будет равно k = 13. По таблице 16 Приложения 1 для k = 13 находим критические значения критерия Стьюдента, они равны соответственно для Р < 0,05 tкр= 2,16 и для Р< 0,01 tкр = 3,01. В принятой форме
записи это выглядит так:
Строим «ось значимости»:
238
Результат попал в зону значимости. Поэтому принимается гипотеза Н1, согласно которой полученный рангово-бисериальный коэффициент корреляции значимо отличается от нуля. Иными словами, на данной выборке подростков обнаружены значимые тендерные различия по степени выраженности вербальных способностей.
Для применения рангово-бисериального коэффициента корреляции необходимо соблюдать следующие условия:
1. Сравниваемые переменные должны быть измерены в разных; шкалах: одна X — в дихотомической шкале; другая Y — в ранговой шкале.
2. Число варьирующих признаков в сравниваемых переменных X и Кдолжно быть одинаковым.
3. Для оценки уровня достоверности рангово-бисериального ко-
эффициента корреляции следует пользоваться формулой (11.9) и таблицей критических значений для t-критерия Стьюдента I при k = п - 2.