
- •Isbn 5-89502-310-х (мпси) isbn 5-89349-361-3 (Флинта)
- •Глава 1
- •Глава 2
- •Глава 3
- •Глава 9
- •Глава 10
- •Глава 12
- •Глава 13
- •Глава 1 понятие измерения
- •1.1. Измерительные шкалы
- •1.2. Номинативная шкала (шкала наименований)
- •Глава 1. Понятие измерения
- •1.3. Порядковая (ранговая, ординарная) шкала
- •1.3.2. Проверка правильности ранжирования
- •1.3.3. Случай одинаковых рангов
- •1.5. Шкала отношений
- •Глава 2
- •2.1. Полное исследование
- •2.2. Выборочное исследование
- •2.3. Зависимые и независимые выборки
- •2.4. Требования к выборке
- •2.5. Репрезентативность выборки
- •2.6. Формирование и объем репрезентативной выборки
- •Глава 3 формы учета результатов измерений
- •3.1. Таблицы
- •3.1. Таблицы
- •3.2. Статистические ряды
- •3.3. Понятие распределения и гистограммы
- •Глава 3. Формы учета результатов измерений
- •Глава 4
- •4.1. Мода
- •4.2. Медиана
- •4.3. Среднее арифметическое
- •4.4. Разброс выборки
- •4.5. Дисперсия
- •4.6. Степень свободы
- •4.7. Понятие нормального распределения
- •Глава 5
- •5.1. Проверка статистических гипотез
- •5.2. Нулевая и альтернативная гипотезы
- •5.3. Понятие уровня статистической значимости
- •5.4. Этапы принятия статистического решения
- •5.5, Классификация психологических задач, решаемых с помощью статистических методов
- •Глава 6 статистические критерии различий
- •6.1.1. Параметрические и непараметрические критерии
- •6.1.2. Рекомендации к выбору критерия различий
- •6.2. Непараметрические критерии для связных
- •6.2.1. Критерий знаков g
- •6.2.3. Критерий Фридмана
- •6.2.4. Критерий Пейджа
- •6.2.5. Критерий Макнамары
- •Глава 7
- •7.1. Критерий u Вилкоксона—Манна—Уитни
- •7.1.1. Первый способ расчета по критерию u
- •7.1.2. Второй способ расчета по критерию u
- •7.2. Критерий q Розенбаума
- •Глава 8
- •8.1. Критерий хи-квадрат
- •8.1.1. Сравнение эмпирического распределения с теоретическим
- •8.1.2. Сравнение двух экспериментальных распределений
- •8.1.3. Использование критерия хи-квадрат для сравнения показателей внутри одной выборки
- •8.2, Критерий Колмогорова-Смирнова
- •8.3. Критерий Фишера — φ
- •8.3.1. Сравнение двух выборок по качественно определенному признаку
- •8.3.2. Сравнение двух выборок по количественно определенному признаку
- •Глава 9
- •9.1.1. Случай несвязных выборок
- •9.1.2. Случай связных выборок
- •Глава 10 введение в дисперсионный анализ anova
- •10.1. Однофакторный дисперсионный анализ
- •10.2.1. Критерий Линка и Уоллеса
- •10.2.2. Критерий Немени
- •Глава 11 корреляционный анализ
- •11.1. Понятие корреляционной связи
- •11.2. Коэффициент корреляции Пирсона
- •11.3. Коэффициент корреляции рангов Спирмена
- •11.3.1. Случай одинаковых (равных) рангов
- •11.4. Расчет уровней значимости коэффициентов корреляции
- •11.5.1. Второй способ вычисления коэффициента «φ»
- •11.7. Бисериальный коэффициент корреляции
- •11.8. Рангово-бисериальный коэффициент корреляции
- •11.9. Корреляционное отношение Пирсона η
- •11.10. Множественная корреляция
- •11.11. Частная корреляция
- •Глава 12
- •12.1. Линейная регрессия
- •12.2. Множественная линейная регрессия
- •12.3. Оценка уровней значимости коэффициентов регрессионного уравнения
- •12.4. Нелинейная регрессия
- •Глава 13 факторный анализ
- •13.1. Основные понятия факторного анализа
- •13. Факторный анализ
- •Глава 13. Факторный анализ
- •13.1. Основные понятия факторного анализа
- •13.2. Условия применения факторного анализа
- •13.3. Приемы для определения числа факторов
- •13.5. Использование факторного анализа в психологии
- •Глава I. Теоретические основы агрессивности и тревожности личности.
8.3. Критерий Фишера — φ
Критерий Фишера предназначен для сопоставления двух рядов выборочных значений по частоте встречаемости какого-либо признака. Этот критерий можно применять для оценки различий в любых двух выборках зависимых или независимых. С его помощью можно сравнивать показатели одной и той же выборки, измеренные в разных условиях.
165
8.3.1. Сравнение двух выборок по качественно определенному признаку
Задача 8.14. Психолог провел эксперимент, в котором выяснилось, что из 23 учащихся математической спецшколы 15 справились с заданием, а из 28 обычной школы с тем же заданием справились 11 человек. Можно ли считать, что различия в успешности решения заданий учащимися спецшколы и обычной школы достоверны?
Решение. Для решения этой задачи с помощью критериея Фишера показатели успешности выполнения заданий необходимо перевести в проценты. В процентах это составит:
(15:23) • 100% = 65,2% для спецшколы
(11:28) • 100% = 39,3% для обычной школы. По таблице 14 Приложения 1 находим величины φ1 и φ2 -соответствующие процентным долям в каждой группе. Так для 65,2% согласно таблице соответствующая величина φ1 = 1,880, а для 39,3% величина φ2 = 1,355.
Эмпирическое значение φэмп подсчитывается по формуле:
(8.15)
Где φ1 —величина, взятая из таблицы 14 Приложения 1, соответствующая большей процентной доле;
φ2 —величина, взятая из таблицы 14 Приложения 1, соответствующая меньшей процентной доле;
п1 —количество наблюдений в выборке 1; п2 — количество наблюдений в выборке 2. В нашем случае
166
По таблице 15 Приложения 1 определяем, какому уровню значимости соответствует φэмп= 1,86.
С таблицей 15 Приложения 1 работают следующим образом: находят внутри ее число равное вычисленному φэмп и смотрят между какими уровнями значимости (с учетом тысячной доли) оно находится. Первый левый столбец таблицы 15 Приложения 1 соответствует уровням значимости от 0,00 (самое верхнее значение) до 010 (самое нижнее значение). Верхняя строчка таблицы — соответствует тысячной доле уровня значимости. Итак, находим наше число, равное 1,86 внутри таблицы 15 — оно находится на пересечении строчки, соответствующей уровню значимости 0,03 и столбца, обозначенного цифрой 1. Следовательно уровень значимости φэмп = 1,86 равен 0,03 + 0,001 = 0,031.
Следует подчеркнуть, однако, что поскольку критические значения для 5% и 1% уровней значимости имеют фиксированную величину и составляют соответственно для 5% φкр = 1,64, а для 1% φкр = 2,28, то таблица 15 Приложения 1 практически не нужна. Поскольку вышеозначенными величинами критических уровней можно пользоваться всегда. В привычной форме записи это выглядит так:
φкр ={1,64 для Р< 0,05 φкр ={2,28 для Р< 0,01
Поскольку мы попали в зону неопределенности, то в терминах статистических гипотез в данном примере можно принять гипотезу Н1 на 5% уровне значимости и отклонить ее на 1% уровне значимости. Иными словами, на 5% уровне значимости можно говорить о различии между успешностью в решении за-
167
даний учениками сравниваемых школ, а на уровне в 1% — этого утверждать нельзя.