
- •Isbn 5-89502-310-х (мпси) isbn 5-89349-361-3 (Флинта)
- •Глава 1
- •Глава 2
- •Глава 3
- •Глава 9
- •Глава 10
- •Глава 12
- •Глава 13
- •Глава 1 понятие измерения
- •1.1. Измерительные шкалы
- •1.2. Номинативная шкала (шкала наименований)
- •Глава 1. Понятие измерения
- •1.3. Порядковая (ранговая, ординарная) шкала
- •1.3.2. Проверка правильности ранжирования
- •1.3.3. Случай одинаковых рангов
- •1.5. Шкала отношений
- •Глава 2
- •2.1. Полное исследование
- •2.2. Выборочное исследование
- •2.3. Зависимые и независимые выборки
- •2.4. Требования к выборке
- •2.5. Репрезентативность выборки
- •2.6. Формирование и объем репрезентативной выборки
- •Глава 3 формы учета результатов измерений
- •3.1. Таблицы
- •3.1. Таблицы
- •3.2. Статистические ряды
- •3.3. Понятие распределения и гистограммы
- •Глава 3. Формы учета результатов измерений
- •Глава 4
- •4.1. Мода
- •4.2. Медиана
- •4.3. Среднее арифметическое
- •4.4. Разброс выборки
- •4.5. Дисперсия
- •4.6. Степень свободы
- •4.7. Понятие нормального распределения
- •Глава 5
- •5.1. Проверка статистических гипотез
- •5.2. Нулевая и альтернативная гипотезы
- •5.3. Понятие уровня статистической значимости
- •5.4. Этапы принятия статистического решения
- •5.5, Классификация психологических задач, решаемых с помощью статистических методов
- •Глава 6 статистические критерии различий
- •6.1.1. Параметрические и непараметрические критерии
- •6.1.2. Рекомендации к выбору критерия различий
- •6.2. Непараметрические критерии для связных
- •6.2.1. Критерий знаков g
- •6.2.3. Критерий Фридмана
- •6.2.4. Критерий Пейджа
- •6.2.5. Критерий Макнамары
- •Глава 7
- •7.1. Критерий u Вилкоксона—Манна—Уитни
- •7.1.1. Первый способ расчета по критерию u
- •7.1.2. Второй способ расчета по критерию u
- •7.2. Критерий q Розенбаума
- •Глава 8
- •8.1. Критерий хи-квадрат
- •8.1.1. Сравнение эмпирического распределения с теоретическим
- •8.1.2. Сравнение двух экспериментальных распределений
- •8.1.3. Использование критерия хи-квадрат для сравнения показателей внутри одной выборки
- •8.2, Критерий Колмогорова-Смирнова
- •8.3. Критерий Фишера — φ
- •8.3.1. Сравнение двух выборок по качественно определенному признаку
- •8.3.2. Сравнение двух выборок по количественно определенному признаку
- •Глава 9
- •9.1.1. Случай несвязных выборок
- •9.1.2. Случай связных выборок
- •Глава 10 введение в дисперсионный анализ anova
- •10.1. Однофакторный дисперсионный анализ
- •10.2.1. Критерий Линка и Уоллеса
- •10.2.2. Критерий Немени
- •Глава 11 корреляционный анализ
- •11.1. Понятие корреляционной связи
- •11.2. Коэффициент корреляции Пирсона
- •11.3. Коэффициент корреляции рангов Спирмена
- •11.3.1. Случай одинаковых (равных) рангов
- •11.4. Расчет уровней значимости коэффициентов корреляции
- •11.5.1. Второй способ вычисления коэффициента «φ»
- •11.7. Бисериальный коэффициент корреляции
- •11.8. Рангово-бисериальный коэффициент корреляции
- •11.9. Корреляционное отношение Пирсона η
- •11.10. Множественная корреляция
- •11.11. Частная корреляция
- •Глава 12
- •12.1. Линейная регрессия
- •12.2. Множественная линейная регрессия
- •12.3. Оценка уровней значимости коэффициентов регрессионного уравнения
- •12.4. Нелинейная регрессия
- •Глава 13 факторный анализ
- •13.1. Основные понятия факторного анализа
- •13. Факторный анализ
- •Глава 13. Факторный анализ
- •13.1. Основные понятия факторного анализа
- •13.2. Условия применения факторного анализа
- •13.3. Приемы для определения числа факторов
- •13.5. Использование факторного анализа в психологии
- •Глава I. Теоретические основы агрессивности и тревожности личности.
5.4. Этапы принятия статистического решения
Принятие статистического решения разбивается на этапы или шаги.
1. Формулировка нулевой и альтернативной гипотез.
2. Определение объема выборки N.
3. Выбор соответствующего уровня значимости или вероятности отклонения нулевой гипотезы. Это может быть величина меньшая или равная 0,05 (5% уровень значимости). В зависимости от важности исследования можно выбрать уровень значимости в 0,1% или даже в 0,001%.
4. Выбор статистического метода, который зависит от типа решаемой психологической задачи.
5. Вычисление соответствующего эмпирического значения по экспериментальным данным, согласно выбранному статистическому методу.
6. Нахождение по таблице Приложения для выбранного статистического метода критических значений, соответствующих уровню значимости для Р = 0,05 и для Р= 0,01.
64
7. Построение оси значимости и нанесении на нее табличных критических значений и эмпирического значения Чэмп. Для этого целесообразно каждый раз пользоваться приведенными выше рисунками.
8. Формулировка принятия решения (выбор соответствующей ги-
потезы Н0 или Н,).
5.5, Классификация психологических задач, решаемых с помощью статистических методов
Подчеркнем еще раз, что, прежде чем выполнить любой психологический эксперимент, необходимо четко сформулировать его задачи, определить экспериментальную гипотезу и все этапы её статистической проверки, а также выбрать соответствующий статистический метод, наиболее эффективный для решения поставленных в исследовании задач.
Подавляющее большинство задач, решаемых психологом в эксперименте, предполагает те или иные сопоставления. Это могут быть сопоставления одних и тех же показателей в разных' группах испытуемых или, напротив, разных показателей в одной и той же группе. Для определения степени эффективности каких-либо воздействий (обучение, тренировка, тренинг, инструктаж и т.п.) сравниваются показатели «до» и «после» этих воздействий. Например, сравниваются показатели уровня агрессивности у подростков до и после психотренинга, что позволяет определить его эффективность. Или в лонгитюдном исследовании сопоставляются результаты у одних и тех же испытуемых по одним и тем же методикам, но в разном возрасте; это позволяет i выявить временную динамику анализируемых показателей. Иногда возникает задача сравнить индивидуальные показатели, полученные при различных внешних условиях, для выявления связи между показателями и факторов, объединяющих эти связи.
Два выборочных распределения сравниваются между собой или с теоретическим законом распределения, чтобы выявить ] различия или, напротив, сходство в типах распределений. Например, сравнение распределений времени решения простой и
65
сложных задач позволит построить классификацию задач и типологию испытуемых.
В общем психологические задачи, решаемые с помощью методов математической статистики, условно можно разделить на несколько групп.
1. Задачи, требующие установления сходства или различия.
2. Задачи, требующие группировки и классификации данных.
3. Задачи, ставящие целью анализ источников вариативности получаемых психологических признаков.
4. Задачи, предполагающие возможность прогноза на основе имеющихся данных.
Эта неполная классификация носит предварительный характер. По мере ознакомления с методами математической статистики, излагаемыми в данном пособии, читатель получит более детальное представление о типологии задач и главное ~ методов, которые могут быть адекватно использованы для их решения. Наиболее полная сводка типов задач и методов их решения дана в Приложении 3.