Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
ответы по тех дисциплинам.doc
Скачиваний:
11
Добавлен:
13.08.2019
Размер:
1.69 Mб
Скачать

4. Технологические свойства материалов.

Технологические свойства — часть общих, присущих данному материалу физико-химических свойств, знание которых позволяет более обоснованно и интенсифицирование проектировать и вести технологический процесс и получать жестяницкие изделия с наилучшими, потенциально возможными для данного материала рабочими (функциональными) свойствами. Для жестяницких изделий важны следующие технологические свойства материалов. Обрабатываемость материала резанием характеризуется такими факторами, как качество обработки — шероховатость обработанной поверхности и точность размеров, стойкость режущего инструмента, сопротивление резанию (скорость и сила при резании), вид стружкообразования. Обрабатываемость давлением (деформируемость) — способность материалов пластически деформироваться в процессе видоизменения формы при гибке, ковке, штамповке, прокатке и прессовании без нарушения целостности .Свариваемость — свойство материалов в нормированных условиях сварочных процессов (тазовой, дуговой и других видов сварки) образовывать сварное неразъемное соединение, соответствующее качеству основного металла, подвергнутого сварке. Свариваемость определяют при испытании натурных сварочных образцов по соответствующим стандартам. Паяемость — свойство материалов образовывать неразъемные соединения с помощью промежуточного вещества — припоя (адгезива), который имеет температуру плавления ниже температуры плавления соединяемых материалов, что и препятствует нежелательным структурным изменениям, имеющим место при расплавлении и затвердевании во время сварки.

5. Механическая обработка материалов

Механическая обработка — обработка заготовки из различных материалов при помощи механического воздействия различной природы с целью создания по заданным формам и размерам изделия или заготовки для последующих технологических операций.

В машиностроении используется 3 вида механической обработки:

1. Обработка резанием, осуществляется на металлорежущих станках путём внедрения инструмента в тело заготовки с последующим выделением стружки и образованием новой поверхности. Виды резания:

- наружные цилиндрические поверхности — точение, шлифование, притирка, обкатывание, суперфиниширование;

- внутренние цилиндрические поверхности — растачивание, сверление, зенкерование, развертывание, протягивание, шлифование, притирка, хонингование, долбление;

- плоскости — строгание, фрезерование, шлифование.

2. Обработка методом пластической деформации - осуществляется под силовым воздействием внешней силы, при этом меняется форма, конфигурация, размеры, физикомеханические свойства детали. Это процессы: ковка, штамповка, прессование, накатывание резьбы.

3. Электрофизическая обработка - основана на использовании специфических явлений электрического тока: искра (электроискровая обработка), импульс (электроимпульсная обработка), дуга (электродуговая обработка).

6. Термическая обработка материалов.

Термическая обработка, совокупность операций теплового воздействия на материалы с целью изменения структуры и свойств в нужном направлении1. От правильного выполнения термической обработки зависит качество и стойкость изготовляемых деталей машин и механизмов, инструмента и другой продукции. Для проведения термической обработки требуются не только глубокие знания теории и практики, но и умение самостоятельно выбрать и разработать наиболее эффективный технологический процесс термической обработки для различных деталей и инструментов, умение выбрать наиболее рациональный метод контроля, установить причины дефектов, методы их предупреждения и исправления, использовать все технические возможности и правильно организовать работу .

При термической обработке в результате нагрева до определённой температуры и охлаждения происходит изменение структуры и, как следствие этого, изменение механических и физических свойств.

Среди основных видов термической обработки следует отметить:

  • Отжиг (гомогенизация и нормализация). Отжиг — вид термической обработки металлов и сплавов, главным образом сталей и чугунов, заключающийся в нагреве до определённой температуры, выдержке и последующем, обычно медленном, охлаждении. При отжиге осуществляются процессы возврата (отдыха металлов), рекристаллизации и гомогенизации. Цели отжига — снижение твёрдости для повышения обрабатываемости, улучшение структуры и достижение большей однородности металла, снятие внутренних напряжений.

  • Диперсионное твердение (старение). После проведения отжига проводится нагрев на более низкую температуру с целью выделения частиц упрочняющей фазы. Иногда проводится ступенчатое старение при нескольких температурах с целью выделения нескольких видов упрочняющих частиц. Изменения в свойствах некоторых металлов и сплавов, возникающие при комнатной температуре или при умеренном нагреве после предварительной термообработки. Изменение в свойствах часто, но не всегда, происходит благодаря фазовым превращениям, но старение никогда не приводит к изменению в химическом составе металла или сплава

  • Зака́лка — вид термической обработки изделий из металлов и сплавов, заключающийся в их нагреве выше критической температуры (температуры изменения типа кристаллической решетки, т.е. полиморфного превращения), с последующим быстрым охлаждением, как правило в жидкости (воде или масле).

Различают закалку с полиморфным превращением, для сталей, и закалку без полиморфного превращения, для большинства цветных металлов.

Материал, подвергшийся закалке приобретает бо́льшую твердость, но становится хрупким, менее пластичным и вязким. Для снижения хрупкости и увеличения пластичности и вязкости, после закалки с полиморфным превращением применяют отпуск. После закалки без полиморфного превращения применяют старение. При отпуске имеет место некоторое снижение твердости и прочности материала.

В зависимости от температуры нагрева, закалку подразделяют на полную и неполную. В случае полной закалки материал нагревают выше линии GSE, в этом случае сталь приобретает структуру аустенит. При неполной закалке производят нагрев выше линии PSK диаграммы, что приводит к образованию избыточных фаз по окончанию закалки. Неполная закалка, как правило, применяется для инструментальных сталей

  • Отпуск необходим для снятия внутренних напряжений, внесённых при закалке. Материал становится более пластичным при некотором уменьшении прочности. Для этого изделие подвергается нагреву в печи до температуры от 150°C-260°C до 370°C-650°C с последующим медленным остыванием.