Добавил:
Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:

Supersymmetry. Theory, Experiment, and Cosmology

.pdf
Скачиваний:
79
Добавлен:
01.05.2014
Размер:
12.6 Mб
Скачать

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Vector supermultiplet and gauge interactions 49

and similarly, respectively, for ΨiL , Fi

and ΨRci, F i. Then, the Lagrangian describing

the coupled gauge and chiral supermultiplets reads

 

 

 

 

 

 

 

L = LV + i

Dµφ iDµφi + i

 

 

Li µDµΨiL

 

 

 

 

 

Ψ

 

 

 

 

 

1

 

 

 

2W

 

 

 

 

 

 

 

 

 

2W

 

i

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

ij

 

 

 

 

ΨciR ΨjL +

 

 

 

ΨL ΨRcj

 

 

 

 

 

2

 

∂φi∂φj

∂φ i∂φ j

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

∂W

 

 

 

∂W

 

 

 

 

 

 

 

 

 

+ i

 

F iFi + Fi

 

 

+ F i

 

 

 

 

 

 

 

 

 

 

∂φi

∂φ i

φj + gD

 

 

 

 

 

+g

 

 

 

φ λ

(t

)i

ΨjL

+ ΨL

λ

 

(t

)i

φ

(t

)i

 

φj (3.52)

 

2

 

 

 

 

 

 

 

 

¯ i ¯a

a

 

j

 

 

¯ i

a

a

j

 

a

i

a

 

j

 

where LV is given in (3.48); the rest of the first three lines corresponds to (3.19) where we have just replaced the ordinary derivatives by covariant derivatives:

Dµφi = µφi − igAµa (ta)i j φj

 

Dµφ i = µφ i + igAµa φ j (ta)j i

 

DµΨiL = µΨiL − igAµa (ta)i j ΨjL

 

DµΨRci = µΨRci + igAµa ΨRcj (ta)j i.

(3.53)

The last line of (3.52) should be compared with (3.43) where the abelian symmetry allows a much lighter (and thus transparent) notation.

One can solve for the auxiliary fields Fi or F i and Da to obtain the scalar potential. One obtains

 

 

i

 

 

 

 

1

 

 

 

 

 

1

 

 

 

V φi, φ i

=

 

 

 

F iFi +

 

 

 

 

(Da)2 +

 

 

 

(Dm)2

 

 

 

 

 

 

 

 

 

 

2

 

a

 

 

 

 

2

m

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

∂W

2

 

 

1

 

 

 

 

 

 

2

 

 

=

 

 

 

 

 

 

+ 2 a

 

 

ga2 φ i

 

 

 

2

 

 

 

i

 

∂φi

 

 

 

(ta)i j φj

 

 

 

 

1

 

 

 

 

 

 

 

 

m

 

i

 

 

 

m

 

 

 

 

 

+

 

 

gm

qi

 

φ

φi

ξ

.

 

(3.54)

 

 

2

 

 

 

 

 

 

 

 

 

m

 

 

 

i

 

 

 

 

 

 

 

 

 

 

 

In this last equation, we have been slightly more general than previously:

We have included the possibility of having a gauge group G which is a product of simple groups: for all generators ta corresponding to the same simple group

factor, the coupling ga is identical. For example, in the case of the Standard Model where G|nonabel. = SU (3) × SU (2), all the generators of SU(3) have coupling gs and all generators of SU (2) have coupling g.

We have included in the last line the possibility of having a certain number of

abelian U (1) gauge groups, labelled by m (qim is the charge of the field φi under U (1)m), with possible Fayet–Iliopoulos terms (labelled ξm for U (1)m). Let us note that a Fayet–Iliopoulos term (3.41) is not allowed for a nonabelian symmetry because it is not gauge invariant12.

12Compare the gauge transformations of the auxiliary fields in (3.39) and (3.50).

50 Basic supermultiplets

The general scalar potential (3.54) with its F -terms and D-terms will be the central object of study when we discuss gauge or supersymmetry breaking.

Exercises

Exercise 1

(a) Show that, under the supersymmetry transformation (3.3), (3.4), we have:

[δ1, δ2] A = 2i ε¯1γµε2 µA [δ1, δ2] B = 2i ε¯1γµε2 µB

i.e. supersymmetry transformations on scalar fields close o -shell.

(b) Prove (3.7) using Fierz transformations (equation (B.29) of Appendix B).

Hints:

(a)Use (B.40) of Appendix B. The fact that supersymmetry transformations close o -shell on scalar fields indicates that there is no need to introduce auxiliary fields in the supersymmetry transformations of scalar fields.

(b)Use equation (B.29) of Appendix B to prove:

ε2ε¯1 − ε1ε¯2 (γ5ε2) (¯ε1γ5) + (γ5ε1) (¯ε2γ5) = −γµ ε1γµ 2) .

Exercise 2 Compute the spectrum for the O’Raifeartaigh model of Section 3.1.4 in the case A = 0 but for any value of X along the flat direction. Check that STr M 2 = 0.

Hint: This time, the A and Y supermultiplets mix in the mass matrices. The eigenval-

ues are for the system (ΨA, ΨX ): m2 + λ2X2 ± λX, for the system (Re A, Re X):

"

m2 + λ2(2X2 − M 2) ± λ λ2(2X2 − M 2)2 + 4m2X2

and for the system (Re A, Re X):

"

m2 + λ2(2X2 + M 2) ± λ λ2(2X2 + M 2)2 + 4m2X2.

Exercise 3 We generalize here the O’Raifeartaigh model to make explicit the structure that leads to supersymmetry breaking.

Let us consider a set of N supermultiplets (Ai, ΨAi ) and P supermultiplets (Xm, ΨXm ) whose interactions are described by the superpotential:

P

W (A, X) = Xmfm(A),

(3.55)

m=1

where fm are P analytic functions of the variables Ai.

(a)Write the scalar potential.

(b)Show that, when N < P , supersymmetry is spontaneously broken in the generic case. The O’Raifeartaigh model (3.22) corresponds to N = 1 and P = 2.

[(c) Give an R-symmetry that would make natural the choice (3.55).]

 

 

 

 

 

 

Exercises

 

51

Hints:

 

 

 

 

 

 

 

 

 

 

 

(a) V =

m |fm(A)|2 + i | m Xm∂fm/∂Ai|2.

 

 

 

 

 

 

 

 

(b) Take

X

m = 0 or

any point on the flat directions defined by

m

X

m

∂f

m

/∂A

i

=

 

#

# #

 

 

 

 

0. Then V = 0 requires fm(A) = 0, i.e. P conditions for

N fields. If N < P ,

#

 

 

 

 

 

 

 

this is not possible in the general case: it would require specific values of the parameters.

(c) R(Ai) = 0, R(Xm) = 2.

Exercise 4 Prove (3.27) from (3.26) using the formulas (B.36) of Appendix B.

c ¯ ¯ c c

Hint: To obtain δS ΨR , introduce a spinor Ψ1 and use Ψ1δS ΨL = Ψ1δS ΨR .

Exercise 5 We write in this exercise the supersymmetric version of quantum electrodynamics as first introduced by [363].

If we want to couple a chiral supermultiplet with a Majorana spinor to an abelian gauge supermultiplet, we face the problem that a gauge (phase) transformation is incompatible with the reality imposed by the Majorana condition. We must thus introduce two Majoranaspinors Ψ1 and Ψ2 in order to form a complex Majorana spinor Ψ± = (Ψ1 ±iΨ2)/ 2 which undergoes a phase transformation under the abelian symmetry.

We thus start from the Lagrangian (3.43) with two chiral supermultiplets (φ±, Ψ±, F±) of charge ±q:

L

= Dµφ D

φ

+

+ Dµφ D

φ

+

1

Ψ

+

µD

Ψ

+

 

+ µ

 

 

 

− µ

 

 

2

 

µ

 

 

 

+ 21

 

µDµΨ+ F+F+ + FF

 

 

 

 

 

 

Ψ

 

 

 

 

 

 

+gq Dφ+φ+ +

 

λ¯Ψ+L φ+

+

 

λ¯Ψ+c R φ+

(3.56)

 

2

2

¯ ¯ c L gq Dφφ+ 2 λΨL φ+ 2 λΨR φ+ V ,

where LV is given in (3.38). This Lagrangian is invariant under (3.40) and the following

transformations:

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

δS φ± = 2 ε¯Ψ±L ,

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

] ε

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Ψ

=

1 − γ5

 

[F

 

 

 

 

 

µD

 

 

 

 

,

 

 

 

 

 

 

 

 

δ

 

 

 

±

φ

±

2

 

 

 

 

 

 

 

 

 

 

S

 

±L

2

 

 

 

 

 

 

 

 

µ

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

µ

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1 + γ5

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

δS F± = −i 2 εγ¯

 

 

DµΨ±L 2gqφ± ε¯

 

 

 

 

 

 

 

λ.

 

 

 

 

2

 

 

 

 

Introducing, as for the fermion fields,

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1

 

 

 

 

 

 

 

 

 

 

1

 

 

A

1

+ iB

 

 

A2

+ iB

 

 

φ±

 

(φ1

± iφ2)

 

 

 

 

 

 

 

 

 

 

 

1

± i

 

 

 

 

2

 

 

 

 

 

 

 

 

 

 

 

 

2

2

 

 

 

2

 

 

2

 

 

 

 

 

1

 

 

 

 

 

 

 

 

 

 

1

 

 

F

1

+ iG

 

 

F

2

+ iG

2

 

F±

 

(F1

± iF2)

 

 

 

 

 

 

 

1

± i

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2

 

2

 

 

 

2

 

 

 

2

 

 

 

(3.57)

,

,

52 Basic supermultiplets

show that the action (3.56) is written

L =

1

 

µν

Fµν +

1

¯

µ

µ

λ +

 

1

2

 

 

 

 

 

 

 

 

 

 

 

 

4 F

 

 

2 λiγ

 

 

2 D

 

 

 

 

 

 

 

 

 

 

 

 

 

 

+

21

(µA1µA1 + µB1µB1 + µA2µA2 + µB2µB2) 21 gqD(A1B2 − A2B1)

 

1

 

¯

 

µ

 

µ

 

 

¯

 

 

µ

 

 

µ

+

1

 

2

B ∂ B iΨ γ

Ψ

 

+

2

 

Ψ1

 

 

Ψ1 + Ψ2

 

 

 

Ψ2 +

2

 

F1

+ G1

+ F2

+ G2

 

gqA

µ

A

∂ A

2

A

 

A

1

 

B ∂

B

2

2 µ 1

¯

1 µ 2

 

 

 

 

 

1

µ

 

2

 

µ

 

 

 

 

1

µ

 

 

 

 

 

 

 

(B

1

 

1 5

 

 

2

λ¯

(B

2

 

 

 

2

5

 

1

 

 

 

 

(3.58)

+gq λ¯

 

 

 

iA γ ) Ψ

 

 

 

 

 

iA γ ) Ψ

.

 

 

 

The supersymmetry transformations corresponding to (3.57) are

 

 

δS Ai

= ε¯Ψi,

 

δS Bi = iεγ¯ 5Ψi, i = 1, 2,

 

 

 

 

 

 

δS Ψ1 = [−iγµDµ (A1 + iB1γ5) + F1 − iG1γ5 − igqγµAµ (A2 + iB2γ5)] ε,

 

δS Ψ2 = [−iγµDµ (A2 + iB2γ5) + F2 − iG2γ5 + igqγµAµ (A1 + iB1γ5)] ε, δS F1 = −iεγ¯ µDµΨ1 − igq ε¯(A2 + iB2γ5) λ − igq εγ¯ µAµΨ2,

δS F2 = −iεγ¯ µDµΨ2 + igq ε¯(A1 + iB1γ5) λ + igq εγ¯ µAµΨ1,

δS G1 = −εγ¯ 5γµDµΨ1 − igq ε¯(B2 − iA2γ5) λ + gq εγ¯ µγ5AµΨ2, δS G2 = −εγ¯ 5γµDµΨ2 + igq ε¯(B1 − iA1γ5) λ − gq εγ¯ µγ5AµΨ1.

Note that, out of the two Majorana spinors Ψ1 and Ψ2, one can form a Dirac spinor which describes the electron in this super-QED theory.

Hint: Dµφ± = µφ± igqAµφ± · · ·

Exercise 6

(a)Check that Dµλa defined in (3.49) transforms as a covariant derivative i.e. transforms as λa in (3.50).

(b)Check that the derivatives (3.53) transform as covariant derivatives, i.e. transform as in (3.51).

Hints:

(a)Use the relation CabeCcde + CbceCade + CcaeCbde = 0 which expresses nothing but the commutation relations (3.47) in the adjoint representation, where

(T a)bc = −iCabc.

(b)Note that Hermitian conjugation raises or lowers the indices; thus, for example from the first equation in (3.51), one obtains

δg φ i = a (ta )i j φ j = a (ta)j iφ j

where we used the fact that the matrix ta is hermitian: ta = taT .

4

The supersymmetry algebra and its representations

Now that we have acquired some familiarity with supersymmetry and the techniques involved, we may discuss more thoroughly the supersymmetry algebra and its representations. As an example of application, we will then discuss in more details the construction of the representations of N = 2 supersymmetry. Of great importance is the appearance of short representations of supersymmetry, associated with the concept of BPS states in soliton physics. Their study allows us to introduce such notions as moduli, moduli space, etc. important when we discuss supersymmetry breaking or string and brane theory. This chapter is intended for the more theoretically oriented reader1.

4.1Supersymmetry algebra

We use two-component notation (see Appendix B). The basic commutator of N = 1 supersymmetry algebra

simply reads

Qr, Q¯s = 2γrsµ

Pµ

 

 

 

 

 

 

 

 

 

¯

 

 

 

µ

 

Pµ

 

 

 

 

 

 

 

 

Qα, Qα˙

= 2σαα˙

 

 

 

 

 

 

 

 

{ α

β

}

$

 

α˙

 

 

β˙ %

 

 

 

(4.1)

 

 

Q , Q

 

= Q¯

 

, Q¯

 

= 0.

 

 

Indeed

 

 

 

 

 

 

 

 

 

 

 

 

$ µ

β % rs

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Qα, Q

β

 

 

 

¯

%

 

 

Qα

, Qβ Q¯β˙

 

=

 

 

 

 

 

 

 

 

 

$ ¯α˙

β

 

 

Q¯α˙

s

 

¯α˙

, Q

β

¯

 

 

r

 

 

 

 

 

Q

 

 

Q

, Q ˙

 

 

 

 

 

 

 

 

 

 

 

 

0

 

 

 

2σ

 

˙ Pµ

 

 

 

 

 

= σµαβ˙

 

 

 

 

αβ

 

 

 

 

 

 

Pµ

 

0

rs

 

 

 

 

 

= 2 (γµ)rs

Pµ.

 

 

 

 

 

In

the case of N supersymmetric

(Majorana)

charges

i

¯˙

,

Qr,

that is Q, Q

i

= 1, . . . , N , one may

use, as

in

Chapter

 

2,

Coleman–Mandula restrictions to

1Since this chapter is on the Theorist track we will assume in Section 4.3 familiarity with the superspace techniques developed in Appendix C. We also use the Van der Waerden notation for spinors (see Appendix B).

54 The supersymmetry algebra and its representations

infer the general form of the supersymmetry algebra, thus following Haag,

Lopuszanski

¯j

} belongs to the representation (1/2, 0)×

and Sohnius [215]. Since {Q, Qβ˙

(0, 1/2) = (1/2, 1/2), it is proportional to Pµ times a matrix Mij . The latter matrix may be shown to be hermitian and positive definite and one may redefine the supersymmetry charges so that Mij be proportional to δij . In other words,

¯j

j

µ

 

(4.2)

{Q, Qβ˙

} = 2δi

σαβ˙

Pµ.

There is, however, something new with the anticommutator {Q, Q}. In all generality, it belongs to the representation (1/2, 0)× (1/2, 0) = (1, 0)+(0, 0) and, accordingly, we may write

{Q, Q} = (σµν )αγ εγβ Mµν Yij + εαβ Zij

(4.3)

where (σµν )αβ = 14 (σµσ¯ν − σν σ¯µ)αβ , Y is symmetric (Yij = +Yji), and Z is antisymmetric (Zij = −Zji). Before going further, let us note that [Q, Pµ] belongs to

(1/2, 0)

×

(1/2, 1/2) = (0, 1/2) + (1, 1/2) and write therefore ((Q

)= Q¯i

)

 

 

 

 

 

α˙

 

 

 

 

 

 

˙

 

 

 

 

 

 

[Q, Pµ] = Xij σ

¯

 

 

 

 

 

 

˙ Q

 

 

 

 

 

 

 

 

µαβ

 

 

 

 

 

 

2

Q¯˙ , Pµ = (Xij ) σ¯µαβ˙ Q.

 

 

 

Using the Jacobi identity

 

 

 

 

 

 

[[Q, Pµ] , Pν ] + [[Pµ, Pν ] , Q] + [[Pν , Q] , Pµ] = 0

and [Pµ, Pν ] = 0, one obtains XX = 0. Then consider the other Jacobi identity

[{Q, Q} , Pµ] − {[Q, Pµ] , Q} + {[Pµ, Q] , Q} = 0.

(4.5)

Contracting with εαβ yields3 Xij = Xji. Hence XX= 0 and Xij = 0. We thus have

& '

iα µ ¯j µ (4.6) [Q , P ] = 0 = Qα˙ , P

i.e. the N supersymmetry charges commute with the generator of translations (we have already seen that this implies that the fields in a supermultiplet have a common

2The Jacobi identity familiar in Lie algebras

[[T1, T2] , T3] + [[T2, T3] , T1] + [[T3, T1] , T2] = 0

reads in the case of the graded Lie algebras that we consider

[[G1, G2} , G3} ± [[G2, G3} , G1} ± [[G3, G1} , G2} = 0

(4.4)

where [Gi, Gj } is an anticommutator if Gi and Gj are both fermionic operators, a commutator otherwise. The signs are + or depending on whether the number of permutations of fermionic operators is even or odd, e.g.

[{F1, F2} , B] − {[F2, B] , F1} + {[B, F1] , F2} = 0.

3Zij being an internal generator commutes with Pµ.

Supermultiplet of currents 55

invariant mass since [Q, P µPµ] = 0). Also, once we have proven that Xij = 0, it follows from (4.5) that Yij = 0. Hence

{Q, Q} = εαβ Zij

$ %

¯i

¯j

= ε

 

˙

(Zij )

 

.

(4.7)

Q

, Q

˙

α˙

 

α˙

 

 

β

 

 

 

 

 

 

β

 

 

 

 

 

 

 

The complex constants Zij are called central charges because they are shown to commute with all generators (see Exercise 3). Note that the central charges have the dimension of a mass.

The supersymmetry charges usually also transform under an internal compact symmetry group G which is a product of a semisimple group and an abelian factor. Denoting by Br the hermitian generators of this group, which satisfy

[Br, Bs] = iCrstBt

we have

The Jacobi identity

&$

¯j

Q, Q ˙

β

[Q, Br] = (br)ij Q

¯i i ¯j

Br, Qα˙ = (br ) j Qα˙ .

% ' $& ' % $

¯j ¯j

, Br Q ˙ , Br , Q+ [Br, Q] , Q ˙

β β

%

= 0

(4.8)

(4.9)

yields (br )j i = (br)i j . Hence the matrices Br are hermitian and the largest possible internal symmetry group which acts on the supersymmetry generators is U (N ).

In the case of N = 1 supersymmetry, one recovers (4.1) since Z, being antisymmetric, vanishes (Z = −Z): there are no nonvanishing central charges. Also, by rescaling the generators Br by (br)11, one obtains from (4.9)

[Qα, Br] = Qα

¯ ¯

Qα˙ , Br = Qα˙ .

There is only one independent combination R of the generators Br which acts nontrivially on the supersymmetry charges

[Qα, R] = Qα

 

Q¯α˙ , R = −Q¯α˙ .

(4.10)

Thus N = 1 supersymmetry possesses an internal global U (1) symmetry known as

¯

the R-symmetry: Qα has R-charge +1 and Qα˙ has R-charge 1. We will see later the important rˆole played by this symmetry (see Section C.2.3 of Appendix C and Chapter 8).

4.2Supermultiplet of currents

The supersymmetry current plays an important rˆole when we discuss the issue of supersymmetry breaking. A key property is that it belongs itself to a supermultiplet,

56 The supersymmetry algebra and its representations

known as the supermultiplet of currents. This is related to the fact that supersymmetry is a spacetime symmetry: since two supersymmetries give a translation, the supersymmetry transformation of the supersymmetry current should give the spacetime translation current, i.e. the energy–momentum tensor.

To be more explicit, the supersymmetry transformation of the supersymmetry current Jreads (as in (A.17) of Appendix Appendix A)

δJ= i¯s {Qs, J} .

(4.11)

Integrating the zeroth component over space, we obtain

 

d3x δJr0 = i¯s {Qs, Qr} = −i Qr, Q¯s s

 

= 2i (γν )r Pν = d3x [2i (γν )r Θ0ν ] .

(4.12)

We deduce that the transformation of the supersymmetry current includes the following term:

δJ= 2i (γν )r Θµν + · · ·

(4.13)

This shows that the supersymmetry current belongs to the same multiplet as the energy–momentum tensor. A simple count of the number of fermionic (J) and bosonic (Θµν ) degrees of freedom shows that one is missing some bosonic components. One can then note that the algebra for the R-symmetry, which can be written with Majorana spinors as

[Qr, R] = −γrs5 Qs,

(4.14)

gives, along the same reasoning as before, the supersymmetry transformation of the R-current:

δJµR = −i¯rγrs5 J+ · · ·

(4.15)

Indeed, the currents (Θµν , J, JµR) form the supermultiplet of currents.

Let us note that the trace of the energy–momentum tensor transforms under supersymmetry into γµJµR: from (4.13), we deduce

δ γ

µ

R

 

=

2i (γµγν ) Θ

 

+

· · ·

=

i

{

γµ, γν

}

Θ

 

+

· · ·

(4.16)

 

Jµ

=

2i Θµ

µ +

 

µν

 

 

 

 

µν

 

 

 

 

 

 

 

· · ·

 

 

 

 

 

 

 

 

 

 

 

 

As is recalled in Section A.5.1 of Appendix Appendix A, the tracelessness of the energy–momentum tensor ensures conformal symmetry. In a supersymmetric context, the two algebraic constraints

Θµµ = 0, γµJµR = 0

(4.17)

lead to the superconformal algebra.

We first note that (Θµν , J, JµR) describe an equal number of bosonic and fermionic degrees of freedom. The symmetric tensor Θµν has 10 independent components minus 4 for current conservation (µΘµν = 0) minus 1 for the tracelessness condition, that is

Representations of the supersymmetry algebra 57

five degrees of freedom. Similarly, Jaccounts for 16 4 4 = 8 and JµR for 4 1 = 3. The full supersymmetry transformations read

δJµR = −i¯rγrs5 J,

 

 

 

 

 

 

 

 

 

 

 

 

 

 

i

 

 

 

 

 

 

δJ= 2i (γν )r Θµν (γν γ5 )r ν JµR

 

 

µνρσ (γν )r ρJ,

 

2

 

1

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

δΘµν =

 

σµρρJν + ¯ σνρρJµ) .

 

 

 

 

 

 

 

 

 

(4.18)

4

 

 

 

 

 

 

 

 

 

Introducing the currents (see (A.222) and (A.225) in Appendix Appendix A)

 

Dµ = xρΘµρ,

Kµν = 2xµxρΘρν − x2Θλµ,

 

S= ixν γrsν J,

(4.19)

and the corresponding charges

 

Kµ = d3x Kµ0,

Sr = d3x Sr0,

 

D = d3x D0,

 

(4.20)

we may derive the following (anti)commutation relations4

 

 

 

 

 

[Q, Mµν ] = µν Q,

 

 

 

 

[S, Mµν ] = µν S,

 

[Q, D] =

i

 

 

 

 

 

 

[S, D] =

i

 

 

 

Q,

 

 

 

 

 

S,

 

2

 

 

 

 

2

 

[Q, Pµ] = 0,

 

 

 

 

 

 

[S, Pµ] = γµQ,

 

[Q, Kµ] = γµS,

 

 

 

 

[S, Kµ] = 0,

 

 

 

 

(4.21)

[Q, R] = −γ5Q,

 

 

 

 

[S, R] = γ5S,

 

 

 

¯

 

 

 

µ

Pµ,

 

 

 

 

 

¯

 

 

µ

Kµ,

 

Q, Q = 2γ

 

 

 

 

 

S, S = 2γ

 

 

 

 

 

¯

 

 

 

 

 

µν

M

 

 

3γ R.

 

 

 

 

(4.22)

S, Q = 2iD + 2

 

µν

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

5

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

This, together with (2.10) of Chapter 2 and (A.230) of Appendix Appendix A, gives the algebra of conformal supersymmetry.

4.3Representations of the supersymmetry algebra

Remember that, in the case of the Poincar´e algebra, representations are classified

according to the mass operator

P 2 = P µ Pµ

and the spin operator which is built out of the Pauli–Ljubanski operator

W µ = 21 εµνρσ Pν Mρσ .

(4.23)

W 2 has eigenvalues −m2j(j+1) for massive states of spin j = 0, 12 , 1, . . . and Wµ = λPµ for massless states of helicity λ.

Of the two “Casimir” operators, when we go supersymmetric, P 2 remains unchanged since it commutes with supersymmetry, whereas W 2 includes some extra contributions.

4We do not include the commutators of R with the generators of the algebra of the conformal group (Pµ, Mµν , D and Kµ) since they all vanish.

58 The supersymmetry algebra and its representations

4.3.1Massless states, in the absence of central charges

 

 

 

 

 

 

 

 

 

 

¯j

j

µ

Pµ

We choose a special frame where Pµ = (E, 0, 0, E). Then {Q, Qα˙

} = 2δi

σαα˙

reads:

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

¯j

 

 

j

E

 

 

 

 

{Qi1, Q

} = 4 δi

 

 

 

 

 

 

 

¯j

} = 0.

 

 

 

 

 

(4.24)

Defining

{Qi2, Q

 

 

 

 

 

 

 

 

 

 

 

 

¯j

 

 

 

 

 

Qi1

 

 

 

 

 

 

 

 

 

 

 

 

 

Q˙

 

 

 

a

 

 

 

,

aj†

 

 

1

,

 

 

 

 

 

 

 

 

 

 

 

 

 

i

 

2E

 

 

2E

 

 

 

we have from (4.24)

{ai, aj†} = δij , {ai, aj } = 0 = {ai†, aj†}.

Note that aj† is in the representation (0, 1/2) 2R and carries helicity5 λ = +1/2, whereas ai is in the representation (1/2, 0) 2L and carries helicity λ = 1/2.

Let us consider a state |0 ≡ |E, λ0 , of energy E and helicity λ0, “annihilated” by the ai : ai|0 = 0. By successive applications of the N “creation” operators aj†,

j = 1 · · · N , one obtains the states

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1

, j : N states

 

 

 

 

 

 

 

 

 

 

 

 

aj†|0

= |E, λ0 +

 

 

 

 

 

 

 

 

 

 

 

 

 

2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1

 

 

 

 

 

 

 

 

 

 

 

 

 

aj1aj2|0 = |E, λ0 + 1; j1j2

:

 

 

N (N − 1) states

 

2

 

 

 

 

 

 

 

 

k

 

 

 

 

 

 

 

 

 

N

 

 

 

 

N !

 

aj1· · · ajk |0 = |E, λ0 +

 

 

; j1

· · · jk

: k

=

 

 

 

 

 

states

2

k!(N − k)!

 

 

 

 

 

N

 

 

 

N

 

 

 

 

 

 

 

 

 

 

 

 

a1· · · aN†|0 = |E, λ0 +

 

 

:

N

= 1 state.

 

 

 

 

 

 

 

2

 

 

 

 

 

 

 

 

 

 

N

 

 

 

= 2N states which form a representation of

We thus have constructed a set of

 

 

N

 

 

 

 

k=0

k

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

supersymmetry6.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

#

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Let us consider several examples:

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

• N = 4

 

λ0 = 1

 

 

vector supermultiplet

 

 

 

λ

 

1

 

1/2

 

0

 

+1/2

 

+1

 

 

 

 

 

 

 

 

 

 

 

 

no. of states

 

 

1

 

 

 

 

 

4

 

 

6

 

4

 

 

1

 

 

 

Note that for N > 4, there is at least one field of spin 3/2 which does not allow renormalizable couplings: hence, renormalizable theories are found only for N ≤ 4. Also for N > 8, there is at least one field of spin 5/2; such fields are not known to have consistent couplings to gravity. Hence consistent theories of (super)gravity require N ≤ 8.

5For massless states, Wµ = λPµ.

 

6

Since, for any state |Φ , 0 =

¯i

}|Φ =

|Qi2|Φ |

2

¯i

2

, we have Qi2|Φ =

¯i

 

Φ|{Qi2, Q

 

+ |Q

|Φ |

|Φ = 0.

 

 

 

 

 

 

 

Q2˙