Добавил:
Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:

Supersymmetry. Theory, Experiment, and Cosmology

.pdf
Скачиваний:
79
Добавлен:
01.05.2014
Размер:
12.6 Mб
Скачать

Gauge coupling unification 229

greatest success. We will discuss how the precise measurement of the gauge couplings at low energy allows us to determine the main parameters of the theory and to check to some degree the concept of unification. Our starting point will thus be the measure of the low energy couplings. In the MS scheme, they are

α3

(MZ ) = 0.1185 ± 0.002,

(9.10)

sin2 θW

(MZ ) = 0.23117

±

0.00016,

(9.11)

α1

(M

Z

) = 127.943

±

0.027.

(9.12)

e.m.

 

 

 

 

9.2.1Renormalization group equations for the gauge couplings of

SU (3) × SU (2) × U (1)

The diagrams which contribute to the renormalization of a gauge coupling gi (i = 1, 2, 3 respectively, for U (1), SU (2) and SU (3)) are given, at one loop, by the diagrams of Fig. 9.1. These diagrams allow us to compute the beta functions to lowest order:

 

dgi

bi

 

 

 

 

 

β(gi) = µ

= 16π2 gi3 + O(g5).

(9.13)

The solution is written in terms of αi = gi2/(4π):

 

 

 

 

1

1

bi

µ

+ O

αi

.

 

αi(µ)

= αi(µ0)

+ 2π ln

µ0

π

(9.14)

+

 

+

 

 

 

+

+

+

+

+

+

+

Fig. 9.1 Diagram contributing at one loop to the renormalization of the gauge coupling.

230 Supersymmetric grand unification

Let us consider more closely the computation of bi, in particular concerning the group factors.

(i)Let (ta)ij be the generators of the gauge group in the representation R of the fermion fields. The diagram

j

k

b

a

l

i

has a group factor tb ij Tr tatb . We have

Tr tatb = T (R) δab

¯

and T (R) = 1/2 if R is the (anti)fundamental (N or N) factor is thus T (R) (ta)ij .

(9.15)

of SU (N ). The group

(ii)Let (T a)bc be the generators of the gauge group in the adjoint representation. If Cabc are the structure constants

[T a, T b] = iCabcT c,

(9.16)

then

 

(T a)bc = −iCabc

(9.17)

and

 

Tr T aT b = C2(G)δab = CacdCbcd.

(9.18)

C2(G) is the Casimir of order 2 of the group G: C2(G) = N for SU (N ) and C2(G) vanishes for an abelian group (no gauge vector self-coupling).

The diagram

 

 

j

c

 

 

 

 

 

 

 

 

 

b

 

a

 

 

 

i

d

 

 

 

 

 

 

 

has a group factor

b

a

 

 

 

t ij CacdCbcd = (t )ij C2

(G).

 

In total,

 

b = 113 C2(G)

 

 

 

(9.19)

32 T (R) Weyl fermions

31 T (R) complex scalars .

A Dirac spinor contributes with its two chirality states (4/3) T (R) to this beta function coe cient. A Majorana spinor contributes as a Weyl spinor.

Gauge coupling unification 231

We find, for the evolution of SU (3) and SU (2) couplings above MZ , with NF

families of quarks and leptons,

 

 

 

 

b3

= 113

× 3 34

× 2 ×

21 NF = 11 34 NF

 

(9.20)

b2

= 113

× 2 32

× 4 ×

21 NF 31 × 21 = 223

34 NF 61

(9.21)

where 1/6 is the Higgs contribution.

 

 

 

The case of the abelian hypercharge symmetry U (1)Y

requires special attention.

Indeed, we have defined (see Section A.3.2 of Appendix Appendix A) the gauge coupling g through the minimal coupling of a field Φ of hypercharge y:

g

 

 

DµΦ = µ − i

 

 

yBµ

Φ,

(9.22)

2

where y is related to the field charge and weak isospin through the relation:

 

q = t3 +

y

.

 

(9.23)

 

 

2

 

 

 

In the case of an abelian group, it is not possible to use the commutation relations to normalize the generators. One may thus replace y by ky if one substitutes g /k for g . To make this explicit, let us write y ≡ 2Ct0:

 

q = t3 + Ct0,

 

 

(9.24)

One then defines

DµΦ =

µ − ig Ct0Bµ Φ.

(9.25)

Since e = g sin θW = gg /"

g1 ≡ C g , g2 ≡ g.

(9.26)

g2 + g 2

, we have

2

 

 

 

 

1

=

1

+

C

,

(9.27)

 

2

2

2

 

 

e

 

 

g

g1

 

or

αe.m1 . = α21 + C2α11,

(9.28)

 

where αe.m. ≡ e2/(4π).

If there is an underlying theory where U (1)Y is imbedded in a nonabelian group G, then C is fixed by the normalization imposed by the commutation relations. One can obtain a simple expression for the normalization constant C under such an assumption.

Indeed, if t3 and t0 are the generators of a simple nonabelian group G in a represen-

tation R, then, using (9.15), we have Tr

R t

3

 

2

= TrR t

0

 

2

= T (R) and TrR t

3

t

0

= 0.

Then, from (9.24),

 

 

 

 

 

 

TrR q2 = (1 + C2)TrR t3 2 .

 

 

 

 

 

(9.29)

232 Supersymmetric grand unification

For example, if we assume that all known fermions form one or more full represen-

tations R of the group G, then

 

TrR q2 = 2(1 + 1 + 1) + 3 × 2

3 × 94 + 3 × 91 = 16,

where we have counted the contributions of the leptons e, µ, τ (and their antiparticles) and of the three colors of quarks u, c, t and d, s, b (and their antiparticles). Also

TrR t3 2 = 12 (3 + 3 × 3) = 6

to account for all the fermion doublets (T (R) = 1/2): three leptons and three quarks in three colors. Hence,

C2 = 5 .

(9.30)

3

 

This can be checked directly on the example of SU (5) by identifying the explicit form of the hypercharge generator t0 (see Exercise 1).

We then obtain the one-loop coe cient for the g1 beta function:

 

2

 

 

 

 

 

2

 

1

 

 

 

2

b1 =

3

f

t0

 

 

f

3

 

t0

 

φ

=

 

 

1

 

2

 

yf2 +

1

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1

 

 

 

 

4

 

 

 

 

 

 

 

 

4C2

3

 

f

3 yφ2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

=

 

NF

 

,

 

 

 

 

 

 

(9.31)

3

10

 

 

 

 

 

 

where 1/10 is the contribution from the Higgs, and we recall that NF is the number of families.

9.2.2The nonsupersymmetric case

We suppose the existence of an underlying gauge symmetry described by a simple gauge group G, which is broken at a superheavy scale MU much larger than the TeV scale. This gauge invariance is only explicit above the scale MU . This theory contains superheavy fields, such as gauge fields, with mass of order MU . We note two important properties of the renormalization group equations for the gauge couplings αi (i = 1, 2, 3) [183]:

(i)any representation R which contains only superheavy fields decouples from these equations;

(ii)any representation R which contains only light fields contributes equally to b1, b2 and b3.

For example, the generators of SU (3) t(3)i are generators of G in the representation R: δij T (3)(R) Tr t(3)it(3)j = δij T (R). Similarly, the generators of SU (2) t(2)a are generators of G in R and δabT (2)(R) Tr t(2)at(2)b = δabT (R). Hence, they contribute equally to b2 and b3. This is why the coe cients of NF in (9.20), (9.21), and (9.31)

Gauge coupling unification 233

are identical: a family of quarks and leptons yields complete representations of the minimal SU (5) group.

Let us thus suppose that the only multiplet which contains both light and super-

heavy fields is the gauge multiplet. Then, using (9.19), we have2 b3

= b1 + 11 and

b2 = b1 + 22/3. Hence

 

b1 3b2 + 2b3 = 0,

(9.32)

and we see, using (9.14), that the combination of couplings α11(µ)3α21(µ)+2α31(µ) is not renormalized at one loop, i.e. is independent of the renormalization scale µ at this order.

If we suppose that these couplings are equal at the scale MU , as expected since they unify into the single coupling g corresponding to the simple group G, then

α11(µ) 3α21(µ) + 2α31(µ) = 0.

(9.33)

We then obtain from (9.28) and (9.33)

 

 

 

 

(1 + 3C2)α21(µ) = αe.m1 .(µ) + 2C2α31(µ),

 

(1 + 3C2)α1

(µ) = 3α1

(µ)

2α1(µ),

(9.34)

1

e.m.

 

3

 

from which we extract the value of sin2 θW = g 2/(g2

+ g 2) = α21/(α21 + C2α11)

sin2 θW (µ) =

1

1 + 2C2

αe.m.(µ)

(9.35)

 

 

.

1 + 3C2

α3(µ)

Thus, since C has a computable value for any given theory, (9.35) yields a testable relation between quantities measurable at µ = MZ . We note the value of sin2 θW at unification: (1 + C2)1 that is 3/8 for C2 = 5/3.

One can also determine the scale of unification MU and the common value αU of the gauge couplings at unification. Indeed, since

 

 

1

 

1

1

 

44

ln

MU

 

(9.36)

 

 

5α1

(µ)

3α2

(µ) 2α3

(µ) =

π

µ

,

we deduce from (9.34)

 

 

 

 

 

 

 

 

 

 

 

 

MU

 

 

6π

 

 

1

 

 

2

 

1

 

 

ln

 

=

 

 

αe.m.(MZ ) (1 + C

)α3

(MZ ) .

(9.37)

MZ

11(1 + 3C2)

Let us take the example of NF = 3 and C2 = 5/3 as in SU (5). We have, using (9.10) and (9.12),

MU

MZ e30 1015 GeV,

 

 

(9.38)

α1

= α1

(M

 

) +

b3

ln

MU

 

42.

(9.39)

 

2π

 

U

3

 

Z

 

 

MZ

 

 

It is a remarkable coincidence that one obtains such a superheavy scale for grand unification. Indeed, any lower scale would be catastrophic for the theory since it would

2Note that this agrees with (9.20), (9.21), and (9.31), if we disregard the Higgs contribution. Indeed, the Higgs representation contains both light and heavy fields (cf. the doublet–triplet splitting problem discussed above for SU (5)).

234 Supersymmetric grand unification

induce rapid proton decay, the gauge bosons Xµ and Y µ being too light. We will see that even such a large scale puts in jeopardy the minimal SU (5) model.

As for the relation (9.35), it reads

0.23117 ± 0.00016 = 0.2029 ± 0.0018.

(9.40)

The order of magnitude comes out right and this is a second success of the grand unification picture. This seems to indicate that there is at least an approximate unification of couplings at a scale much larger than we might have expected. Indeed, this does not leave much room for physics in the range between MZ and MU : this has become known as the “grand desert hypothesis”.

There is, however, still a discrepancy of some 10 standard deviations in (9.40) between the experimental result (first number) and the prediction (second number). Where could such a disagreement come from?

Higher orders in the evolution of the renormalization group equations. One may include the two-loop contribution to the beta functions. This gives an extra contribution δh.o. 0.0029 on the right-hand side of (9.40).

Threshold e ects. One needs to be more quantitative to account for the decoupling of heavy particles in the evolution of the gauge couplings. One might also include possible intermediate thresholds. We call δth the corresponding contribution.

Mixed representations. It is also possible to have representations which mix light and superheavy fields. We have seen for example that the representation for the Higgs doublet falls in such a category in the case of SU (5) since the corresponding triplet must be superheavy to prevent too rapid proton decay. We call δm such a contribution.

In total, one must replace (9.35) by

 

 

 

sin2 θW (MZ ) =

1

1 + 2C2

αe.m1 .(MZ )

+ δh.o. + δth + δm.

(9.41)

1 + 3C2

α31(MZ )

The precision measurements in (9.10)–(9.12) provide useful indications on the magnitude of the last terms. In any case, they show that the minimal SU (5) model is not compatible with gauge unification. In other words, given their allowed range of values, the gauge couplings of the minimal SU (5) model do not intersect at a single point.

9.2.3The supersymmetric case

We now turn to the supersymmetric case. We will describe supersymmetric models of grand unification in the next section. For the time being, it su ces to stress that, for scales µ larger than the supersymmetric thresholds, one must take into account the supersymmetric partners in the evolution of the running gauge couplings. There is no need for further computations, since equation (9.19) summarizes it all.

Indeed, for a gauge vector supermultiplet (adjoint representation), gauge bosons

contribute

11 C

2

(G) whereas (Majorana) gaugino fields contribute

2 T (R

adj.

) =

2

 

3

 

3

 

3 C2

(G); this adds up to a total of 3C2(G).

 

 

 

For a chiral supermultiplet in a representation R of the group G (complex) scalars contribute 13 T (R) and the Weyl fermion 23 T (R), adding up to T (R).

Gauge coupling unification 235

Thus, (9.19) reads, in the supersymmetric case,

b = 3C2(G) T (R)|chiral supermultiplet

(9.42)

which gives for NF families and two Higgs doublets:

b1 = 2NF 35

b2

= 6

2NF 1

(9.43)

b3

= 9

2NF

 

where 3/5 and 1 are the contributions of the two doublets of Higgs supermultiplets. If we make the hypothesis that the only multiplets which contain light and superheavy fields are the gauge vector supermultiplets, then one recovers in the supersym-

metric case, the relation (9.32) and thus (9.41) follows.

What is new is that in δm, the contribution of mixed light–superheavy representations, there are now two complete chiral supermultiplets corresponding to the representations of H1 and H2, instead of a single Higgs doublet in the nonsupersymmetric case.

A more complete analysis is performed by assuming that all supersymmetric particles have a common mass MSUSY . Since squarks and sleptons form complete representations of SU (5), they modify in the same way the evolution of all couplings. Also, the contribution of gauginos does not change the relation (9.33). In the case of Higgs, in the simplest approach, one is taken with a mass MZ whereas the other has mass

MSUSY . Hence the determination of δm may be turned into a determination of MSUSY . It is a remarkable feature that for a value of MSUSY in the TeV range, a region which was favored earlier by the naturalness criterion, there is unification of the three gauge

couplings at a scale of order 1016 GeV (see Fig. 9.2).

60

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

50

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

α

 

 

–1

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

40

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

α

 

–1

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

30

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

20

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

α

 

–1

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

10

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

0

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

102

105

108

 

 

 

 

 

1011

1014

1016

Fig. 9.2 Unification of gauge couplings in the supersymmetric case for MSUSY 1 TeV.

236 Supersymmetric grand unification

9.3The minimal supersymmetric SU(5) model

Following the procedure developed in Chapter 5 which is to introduce supersymmetric partners for every field of the nonsupersymmetric model, we introduce:

a vector supermultiplet in the representation 24 of SU (5);

¯

NF chiral supermultiplets in the representations 5 and 10 to accomodate the NF families of quarks and leptons; as above, we denote them, respectively, ηi and χij ;

a chiral supermultiplet Σ in the representation 24 to break the grand unified symmetry SU (5);

i

¯

 

 

two chiral supermultiplets, one H1

in the 5 and the other H2i in the 5 of SU (5).

 

Among the scalar components, one recovers the SU (2) doublet H1 in the

¯

 

5 and

 

the SU (2) doublet H2 in the 5: they have opposite hypercharge.

 

 

 

 

¯

¯

 

We note at this stage why we cannot identify the 5 of Higgs with one of the 5 of the

leptons (and hence consider the Higgs doublet as the supersymmetric partner of one

¯

of the lepton doublets): the fermionic component of the corresponding 3 would be the light dc whereas the prevention of rapid proton decay imposes it to be superheavy (see Section 9.3.4 below).

The superpotential for the field Σ responsible for SU (5) breaking is

 

W (Σ) =

M

Tr Σ2

+

Λ

Tr Σ3.

 

(9.44)

 

 

 

 

 

 

2

 

 

 

 

3

 

 

 

 

 

The corresponding scalar potential reads

 

 

 

 

 

 

 

 

ij

∂W

 

1

 

 

 

 

∂W

 

2

 

V =

 

 

 

 

,

(9.45)

Σji

5 δij

Tr Σ

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

the unusual form being due to the implementation of the constraint Tr Σ = 0 (see Exercise 2).

The minimum corresponds to

 

i

 

1

 

 

 

 

 

M Σji + Λ Σ2 j

 

 

δji Tr Σ2

= 0.

(9.46)

5

There are three solutions:

 

 

 

 

 

 

 

 

 

 

unbroken SU (5),

 

Σi

= 0.

 

 

 

(9.47)

 

 

 

 

 

 

 

 

j

 

 

 

 

 

 

 

• SU (5) broken into SU (4) × U (1),

 

 

 

 

 

 

 

 

i

M

1

1

1

 

(9.48)

Σj =

 

 

 

1

 

.

 

 

 

 

 

 

 

 

4

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The minimal supersymmetric SU(5) model 237

SU (5) broken into SU (3) × SU (2) × U (1),

2

 

M

 

2

 

 

 

 

 

 

 

 

 

3

 

 

Σji =

Λ

 

2

 

3

 

.

(9.49)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

9.3.1Gauge coupling unification

We illustrate the general discussion of supersymmetric gauge coupling unification with the case of minimal SU (5). For simplicity, we assume that the scalar fields in the 24 have the same mass MU as the superheavy vector fields, whereas the superheavy triplets have a mass denoted by MT . We also take all supersymmetric particles and one of the two Higgs doublet to have a common mass MSUSY . Finally, we limit ourselves

to one-loop renormalization group equations, in the DR scheme where thresholds can

be crossed with step functions (see Appendix E).

Using the results of Section 9.2, we may write the renormalization group equations for the gauge couplings:

 

1

1

 

1

 

 

 

 

 

 

4

 

 

 

 

MZ

 

 

 

 

 

MSUSY

 

MT

 

 

 

 

 

α3

 

(MZ ) = αU

+

 

 

 

11

 

 

NF ln

 

 

 

 

+ (9 2NF ) ln

 

 

 

 

ln

 

 

,

 

 

 

2π

3

MSUSY

 

MU

MU

 

 

 

1

1

 

1

 

43

 

4

 

 

 

MZ

 

 

 

 

 

MSUSY

 

 

 

 

 

 

 

 

α2

 

(MZ ) = αU

+

 

 

 

 

 

 

 

 

NF ln

 

 

 

+ (5

2NF ) ln

 

 

 

,

 

 

 

 

 

(9.50)

 

2π

6

 

3

MSUSY

 

MU

 

 

 

 

 

 

1

1

 

1

 

 

 

1

 

 

 

 

 

4

 

 

MZ

 

 

3

 

 

MSUSY

2

MT

 

α1

 

(MZ ) = αU

+

 

 

 

 

 

NF ln

 

+

 

2NF ln

 

 

 

 

 

ln

 

.

 

2π

10

3

MSUSY

5

 

MU

 

5

MU

Then, one may consider the same combinations as in (9.33) and (9.36):

3α21 2α31 − α11 (MZ ) =

1

 

12

ln

 

MT

2 ln

MSUSY

,

 

 

 

 

 

 

 

2π

5

MZ

 

MZ

5α11 3α21 2α31 (MZ ) =

1

36 ln

MU

+ 8 ln

MSUSY

 

.

2π

MZ

 

MZ

(9.51)

(9.52)

Once the supersymmetric threshold MSUSY is chosen, the first relation fixes the triplet mass, or vice versa. The success of the model is associated with the fact that, for values of MSUSY compatible with the requirement of naturalness, one finds values of MT of the order of the superheavy scale MU , thus preventing rapid proton decay (we will see however below that this is not su cient in the case of minimal SU (5)). Taking for example MSUSY = 1 TeV, and including two-loop renormalization group equations and one-loop threshold contributions, one obtains [290]:

3.5 × 1014

GeV ≤ MT 3.6 × 1015

GeV,

 

1.7 × 1016

GeV ≤ MU 2.0 × 1016

GeV.

(9.53)

Finally, we note the value of αU at unification: αU 1/24 which is somewhat larger than in the non-supersymmetric case.

238 Supersymmetric grand unification

9.3.2Back to the naturalness and hierarchy problem

Let us come back for a moment to the doublet–triplet splitting problem in the context of the nonsupersymmetric minimal SU (5) model. The dangerous terms in the scalar potential are those which mix the 24 of Higgs (Σ) with the 5 (H):

V , H) = αHH Tr Σ2 + βHΣ2H.

(9.54)

These terms are in any case present because they are induced by radiative corrections, as given in Fig. 9.3. They give a mass of order Σ to the triplet of Higgs within H, which prevents too fast a proton decay but a severe fine tuning is necessary in order not to give the same mass to the remaining doublet.

When we turn to the symmetric case, such terms appear already at the tree level because of the gauge interactions: the D-term of the potential necessarily involves such

terms. Indeed, since the SU (5) D-term is written

,

 

Da = g ΣT aΣ + H1taH1 + H2taH2

(9.55)

and the corresponding term (Da)2 in the potential involves the mixed term

 

g2 ΣT aΣ HitaHi , i = 1, 2,

 

(9.56)

which is a specific form of (9.54). We expect this property to be stable under radiative corrections because of the nonrenormalization theorems characteristic of supersymmetry. We have seen that the parameters of the superpotential are not renormalized: radiative corrections are not expected to produce F -terms in the potential, but only D-terms. Hence their contribution must be of the form (9.56). Indeed, there are new contributions in the form of the diagrams of Fig. 9.4: adding them to those of Fig. 9.3 yields a total contribution in the form of (9.56).

Now, with the ground state (9.49), one can easily check that ΣT aΣ = 0: for generators of SU (3)×SU (2)×U (1) this amounts to Tr T a = 0, whereas the remaining

Σ

Σ

Σ

Σ

X

X

X

X

H

H

H

H

Σ

Σ

Σ

Σ

X

X

X

X

H

H

H

H

Fig. 9.3