
- •Введение
- •1. Электрические цепи постоянного тока
- •Элементы электрической цепи постоянного тока
- •1.2. Электрический ток, эдс и напряжение
- •1.3. Активные и пассивные элементы электрических цепей. Закон Ома
- •1.4. Источник эдс и источник тока
- •1.5. Законы Кирхгофа
- •1.6. Использование законов Кирхгофа для расчета электрических цепей
- •1.7. Эквивалентные преобразования электрических цепей
- •1.7.1. Последовательное соединение элементов.
- •1.7.2. Параллельное соединение элементов.
- •1.7.3. Смешанное соединение резистивных элементов.
- •1.7.4. Эквивалентные преобразования резистивных элементов треугольником и звездой.
- •1.8. Использование метода узловых потенциалов
- •1.9. Метод контурных токов
- •1.10. Работа и мощность постоянного тока. Закон Джоуля – Ленца
- •2. Электрические цепи переменного тока
- •2.1. Генерация синусоидальной эдс. Основные величины, характеризующие переменный ток
- •2.2. Представление синусоидальных величин аналитически, графически, вращающимися векторами, комплексными числами
- •2.3. Цепь переменного тока с активным сопротивлением
- •2.4. Цепь переменного тока с индуктивностью
- •2.5. Цепь переменного тока с ёмкостью
- •2.6. Цепь переменного тока с активным сопротивлением и индуктивностью
- •2.7. Цепь переменного тока с активным сопротивлением и ёмкостью
- •2.8. Неразветвлённая цепь переменного тока с активным сопротивлением, индуктивностью и ёмкостью. Резонанс напряжений
- •2.9. Разветвленная цепь однофазного переменного тока. Резонанс токов
- •2.10. Колебательный lc - контур переменного тока
- •2.11. Коэффициент мощности
- •3. Трёхфазные электрические цепи
- •3.1. Преимущество трёхфазного тока. Принцип получения трёхфазной эдс
- •3.2.2. Отсутствие нулевого провода
- •3.3. Обрыв фазы и короткое замыкание фазы без нулевого провода при соединении источников энергии и потребителей звездой
- •3.3.1. Обрыв фазы a
- •3.3.2. Короткое замыкание фазы a
- •3.4. Соединение источников и приёмников электроэнергии треугольником. Соотношения между фазными и линейными напряжениями и токами при симметричной и несимметричной нагрузках
- •3.5. Обрыв фаз и обрыв линейного провода при соединении источников и потребителей треугольником
- •3.5.1. Обрыв фазы ab
- •3.5.2. Обрыв фаз ab и bc
- •3.5.3. Обрыв линейного провода
- •3.6. Мощность трёхфазной цепи
- •3.7. Соотношения активных мощностей при симметричной нагрузке и при соединении звездой и треугольником
- •3.8. Вращающееся магнитное поле трёхфазной системы переменного тока
- •4. Трансформаторы
- •4.1. Назначение, области применения, устройство и принцип действия однофазного трансформатора
- •4.2. Режимы работы трансформатора. Коэффициент полезного действия трансформатора
- •4.3. Трёхфазные трансформаторы
- •4.4. Измерительные трансформаторы
- •5. Электрические измерения
- •5.1. Методы измерения. Погрешности измерения и классы точности
- •5.2. Приборы магнитоэлектрической системы
- •5.3. Приборы электромагнитной системы
- •5.4. Приборы электродинамической системы
- •5.5. Цифровые измерительные приборы
- •5.6. Логометры
- •5.7. Индукционные приборы
- •5.8. Измерение мощности в трёхфазных цепях
- •5.9. Омметры. Мегомметры
- •10. Измерение ёмкости и индуктивности
- •6. Электрические машины постоянного тока
- •6.1. Устройство и принцип действия генератора постоянного тока
- •6.2. Генераторы постоянного тока независимого и параллельного
- •6.3. Генераторы постоянного тока последовательного и смешанного возбуждений и их основные характеристики
- •6.4. Принцип действия электродвигателя постоянного тока
- •6.5. Электродвигатели постоянного тока параллельного возбуждения
- •6.6. Электродвигатели постоянного тока последовательного и смешанного возбуждений и их основные характеристики
- •6.7. Пуск, регулирование частоты вращения и реверс электродвигателей постоянного тока
- •7.Трёхфазные асинхронные машины
- •7.2. Зависимость частоты вращения ротора, величины эдс и тока
- •7.3. Электромагнитный момент и механическая характеристика
- •7.4. Пуск асинхронных двигателей (трёхфазных и однофазных)
- •7.5. Регулирование частоты вращения трёхфазного асинхронного двигателя
- •7.6. Реверс и способы управления асинхронными двигателями
- •8. Полупроводниковые приборы
- •8.1. Электропроводность полупроводников
- •8.2. Полупроводниковые диоды. Устройство, принцип действия
- •8.3. Биполярные транзисторы. Устройство, принцип работы
- •8.4. Схемы включения биполярных транзисторов с p-n-p структурой
- •8.5. Полевые транзисторы с управляющим p-n переходом
- •8.6. Полевые мдп-транзисторы с индуцированным каналом p-типа
- •8.7. Полевые мдп-транзисторы с индуцированным каналом n-типа
- •8.8. Динисторы, тиристоры. Устройство, принцип действия
- •8.9. Симисторы. Устройство, принцип действия
- •8.10. Фоторезисторы и фотодиоды. Устройство, принцип действия
- •8.11. Фототранзисторы, фототиристеры, оптроны.
- •9. Схемы электронных преобразователей
- •9.1. Однополупериодные и двухполупериодные выпрямители
- •9.2. Трёхфазные выпрямители. Электрические сглаживающие фильтры
- •9.3. Электронные уилители.
- •9.4. Усилительные каскады на биполярных транзисторах
- •9.5. Усилители постоянного тока
- •9.6. Импульсные усилители
- •9.7. Операционные усилители
- •10. Цифровые устройства
- •10.1. Логические функции, логически устройства.
- •10.2. Основные логические элементы.
- •4. Логический элемент или, операция логическое сложение ,
- •10.3. Диодные логические элементы или, и
- •10.4. Транзисторный логический элемент не. Логический элемент и-не транзисторно-транзисторной логики
- •10.5. Логический элемент или-не эмиттерно-связанной логики
- •10.6. Асинхронный rs-триггер. Устройство, принцип действия
- •10.7. Синхронный rs-триггер. Устройство, принцип действия
- •10.8. Синхронные d и t-триггеры. Устройство, принцип действия
- •10.9. Синхронный jк - триггер. Устройство, принцип действия
- •10.10. Шифратор. Устройство, принцип работы
- •10.11. Дешифратор. Устройство, принцип работы
- •10.12. Регистры. Устройство, принцип работы
- •10.13. Счётчики импульсов. Устройство, принцип работы
- •10.14. Сумматоры. Устройство, принцип работы
- •10.15. Аналого-цифровые и цифро-аналоговые преобразователи
- •10.16. Микропроцессоры и микропроцессорные системы
- •Cодержание
- •Иванов Евгений Николаевич электротехника и электроника Учебное пособие
10.4. Транзисторный логический элемент не. Логический элемент и-не транзисторно-транзисторной логики
Логический элемент НЕ реализуется с помощью биполярного транзистора n-p-n cтруктуры. Принципиальная электрическая схема транзисторного логического элемента НЕ и его таблица истинности приведены на рис.10.7.
Схема работает следующим образом. Если на вход x логического элемента подать сигнал лог.0, то транзистор VT будет закрыт и на выходе y появится сигнал лог.1, так как всё напряжение будет падать на закрытом транзисторе. При подаче на вход x логического элемента сигнала лог.1, транзистор VT открывается и на выходе y появится сигнал лог.0, при этом всё напряжение падает на резисторе Rк.
При использовании логических элементов транзисторно-транзисторной логики, построенной с помощью биполярных транзисторов n-p-n cтруктуры, реализуется операция И-НЕ. На рис.10.8 приведена электрическая схема логического элемента И-НЕ и таблица истинности. Схема состоит из двух логических элементов И и НЕ, соединённых последовательно. Транзисторный элемент И имеет несколько входов. На схеме рассматриваются только два из эмиттерных входов х1 и х2 транзистора VT1, коллектор которого соединён с базой инвертора, построенного на транзисторе VT2.
Рис.10.7. Принципиальная электрическая схема транзисторного логического элемента НЕ и его таблица истинности
Рис.10.8. Электрическая схема логического элемента И-НЕ и его таблица истинности
Схема работает следующим образом. Если на входы х1 и х2 транзистора VT1 поступают сигналы лог.0 или на одном из этих входов присутствует сигнал лог.1, то базовый ток пройдет через сопротивление базы транзистора к эмиттерным входам (входу) от “+” источника питания к его “–“. При этом, транзистор VT2 будет закрыт и на его выходе y присутствует cигнал лог.1. Если на входы х1 и х2 транзистора VT1 поступают положительные сигналы лог.1, то в этом случае закрываются эмиттерные входы тразистора VT1 и базовый ток течет через коллектор тразистора VT1 к базе тразистора VT2, открывая его. При этом на выходе у тразистора VT2 появится синал лог.0.
10.5. Логический элемент или-не эмиттерно-связанной логики
На рис.10.9 изображена электрическая схема логического элемента ИЛИ-НЕ, построенного на транзисторах n-p-n cтруктуры, и его таблица истинности. Если на
входах х1 и х2 транзисторов VT1, VT2 присутствуют входные сигналы лог.0, то эти транзисторы будут закрыты и сопротивление между их коллекторами и эмиттерами будет бесконечным. При этом коллекторная цепь этих транзисторов будет иметь положительный потенциал, то есть инвертированный сигнал ИЛИ, который будет поступать на вход транзистора VT3. На выходе у транзистора VT3, работающего в режиме повторителя, появится сигнал лог.1.
В случае поступления на входы х1 и х2 транзисторов VT1, VT2 положительных сигналов лог.1 или на одном из этих входов присутствует сигнал лог.1, то их коллекторные цепи будут иметь отрицательный потенциал. При этом транзисторы VT1, VT2 (или один из них) открываются, и сопротивление цепи коллектор-эмиттер будет равно нулю. Так как Rк>Rэ1, то на общем коллекторном выходе транзисторов VT1, VT2 появится отрицательный потенциал, который поступит на вход транзистора VT3 и закроет его. Сигнал на выходе y транзистора VT3 будет иметь лог.0. Фактически транзистор VT3 является повторителем действия выходного сигнала транзисторов VT1 и VT2, работающих в режиме операции ИЛИ-НЕ.
Рис.10.9. Электрическая схема логического элемента ИЛИ-НЕ и его таблица истинности