
- •Введение
- •1. Электрические цепи постоянного тока
- •Элементы электрической цепи постоянного тока
- •1.2. Электрический ток, эдс и напряжение
- •1.3. Активные и пассивные элементы электрических цепей. Закон Ома
- •1.4. Источник эдс и источник тока
- •1.5. Законы Кирхгофа
- •1.6. Использование законов Кирхгофа для расчета электрических цепей
- •1.7. Эквивалентные преобразования электрических цепей
- •1.7.1. Последовательное соединение элементов.
- •1.7.2. Параллельное соединение элементов.
- •1.7.3. Смешанное соединение резистивных элементов.
- •1.7.4. Эквивалентные преобразования резистивных элементов треугольником и звездой.
- •1.8. Использование метода узловых потенциалов
- •1.9. Метод контурных токов
- •1.10. Работа и мощность постоянного тока. Закон Джоуля – Ленца
- •2. Электрические цепи переменного тока
- •2.1. Генерация синусоидальной эдс. Основные величины, характеризующие переменный ток
- •2.2. Представление синусоидальных величин аналитически, графически, вращающимися векторами, комплексными числами
- •2.3. Цепь переменного тока с активным сопротивлением
- •2.4. Цепь переменного тока с индуктивностью
- •2.5. Цепь переменного тока с ёмкостью
- •2.6. Цепь переменного тока с активным сопротивлением и индуктивностью
- •2.7. Цепь переменного тока с активным сопротивлением и ёмкостью
- •2.8. Неразветвлённая цепь переменного тока с активным сопротивлением, индуктивностью и ёмкостью. Резонанс напряжений
- •2.9. Разветвленная цепь однофазного переменного тока. Резонанс токов
- •2.10. Колебательный lc - контур переменного тока
- •2.11. Коэффициент мощности
- •3. Трёхфазные электрические цепи
- •3.1. Преимущество трёхфазного тока. Принцип получения трёхфазной эдс
- •3.2.2. Отсутствие нулевого провода
- •3.3. Обрыв фазы и короткое замыкание фазы без нулевого провода при соединении источников энергии и потребителей звездой
- •3.3.1. Обрыв фазы a
- •3.3.2. Короткое замыкание фазы a
- •3.4. Соединение источников и приёмников электроэнергии треугольником. Соотношения между фазными и линейными напряжениями и токами при симметричной и несимметричной нагрузках
- •3.5. Обрыв фаз и обрыв линейного провода при соединении источников и потребителей треугольником
- •3.5.1. Обрыв фазы ab
- •3.5.2. Обрыв фаз ab и bc
- •3.5.3. Обрыв линейного провода
- •3.6. Мощность трёхфазной цепи
- •3.7. Соотношения активных мощностей при симметричной нагрузке и при соединении звездой и треугольником
- •3.8. Вращающееся магнитное поле трёхфазной системы переменного тока
- •4. Трансформаторы
- •4.1. Назначение, области применения, устройство и принцип действия однофазного трансформатора
- •4.2. Режимы работы трансформатора. Коэффициент полезного действия трансформатора
- •4.3. Трёхфазные трансформаторы
- •4.4. Измерительные трансформаторы
- •5. Электрические измерения
- •5.1. Методы измерения. Погрешности измерения и классы точности
- •5.2. Приборы магнитоэлектрической системы
- •5.3. Приборы электромагнитной системы
- •5.4. Приборы электродинамической системы
- •5.5. Цифровые измерительные приборы
- •5.6. Логометры
- •5.7. Индукционные приборы
- •5.8. Измерение мощности в трёхфазных цепях
- •5.9. Омметры. Мегомметры
- •10. Измерение ёмкости и индуктивности
- •6. Электрические машины постоянного тока
- •6.1. Устройство и принцип действия генератора постоянного тока
- •6.2. Генераторы постоянного тока независимого и параллельного
- •6.3. Генераторы постоянного тока последовательного и смешанного возбуждений и их основные характеристики
- •6.4. Принцип действия электродвигателя постоянного тока
- •6.5. Электродвигатели постоянного тока параллельного возбуждения
- •6.6. Электродвигатели постоянного тока последовательного и смешанного возбуждений и их основные характеристики
- •6.7. Пуск, регулирование частоты вращения и реверс электродвигателей постоянного тока
- •7.Трёхфазные асинхронные машины
- •7.2. Зависимость частоты вращения ротора, величины эдс и тока
- •7.3. Электромагнитный момент и механическая характеристика
- •7.4. Пуск асинхронных двигателей (трёхфазных и однофазных)
- •7.5. Регулирование частоты вращения трёхфазного асинхронного двигателя
- •7.6. Реверс и способы управления асинхронными двигателями
- •8. Полупроводниковые приборы
- •8.1. Электропроводность полупроводников
- •8.2. Полупроводниковые диоды. Устройство, принцип действия
- •8.3. Биполярные транзисторы. Устройство, принцип работы
- •8.4. Схемы включения биполярных транзисторов с p-n-p структурой
- •8.5. Полевые транзисторы с управляющим p-n переходом
- •8.6. Полевые мдп-транзисторы с индуцированным каналом p-типа
- •8.7. Полевые мдп-транзисторы с индуцированным каналом n-типа
- •8.8. Динисторы, тиристоры. Устройство, принцип действия
- •8.9. Симисторы. Устройство, принцип действия
- •8.10. Фоторезисторы и фотодиоды. Устройство, принцип действия
- •8.11. Фототранзисторы, фототиристеры, оптроны.
- •9. Схемы электронных преобразователей
- •9.1. Однополупериодные и двухполупериодные выпрямители
- •9.2. Трёхфазные выпрямители. Электрические сглаживающие фильтры
- •9.3. Электронные уилители.
- •9.4. Усилительные каскады на биполярных транзисторах
- •9.5. Усилители постоянного тока
- •9.6. Импульсные усилители
- •9.7. Операционные усилители
- •10. Цифровые устройства
- •10.1. Логические функции, логически устройства.
- •10.2. Основные логические элементы.
- •4. Логический элемент или, операция логическое сложение ,
- •10.3. Диодные логические элементы или, и
- •10.4. Транзисторный логический элемент не. Логический элемент и-не транзисторно-транзисторной логики
- •10.5. Логический элемент или-не эмиттерно-связанной логики
- •10.6. Асинхронный rs-триггер. Устройство, принцип действия
- •10.7. Синхронный rs-триггер. Устройство, принцип действия
- •10.8. Синхронные d и t-триггеры. Устройство, принцип действия
- •10.9. Синхронный jк - триггер. Устройство, принцип действия
- •10.10. Шифратор. Устройство, принцип работы
- •10.11. Дешифратор. Устройство, принцип работы
- •10.12. Регистры. Устройство, принцип работы
- •10.13. Счётчики импульсов. Устройство, принцип работы
- •10.14. Сумматоры. Устройство, принцип работы
- •10.15. Аналого-цифровые и цифро-аналоговые преобразователи
- •10.16. Микропроцессоры и микропроцессорные системы
- •Cодержание
- •Иванов Евгений Николаевич электротехника и электроника Учебное пособие
9. Схемы электронных преобразователей
9.1. Однополупериодные и двухполупериодные выпрямители
Выпрямителями называются статические преобразователи переменного тока в постоянный ток. Схемы выпрямителей зависят от циклов выпрямления “m” (количества пульсаций за период Т). При однополупериодном выпрямлении m=1.
На
рис.9.1 изображена схема однополупериодного
выпрямителя, построенного на одном
диоде, а на рис.9.2 показаны временные
зависимости мгновенного напряжения
на входе выпрямителя, а также мгновенных
значений напряжения
и тока
на выходе выпрямителя. Из временных
зависимостей видно, что в течение первого
полупериода диод VD
пропускает только прямое (положительное)
мгновенное напряжение, задерживая
величину обратного (отрицательного)
значения напряжения на входе выпрямителя.
При этом по цепи проходит пульсирующий
ток
.
Вольтметром
электромагнитного типа измеряют
действующее значение переменного
напряжения
.
Рис.9.1. Схема однополупериодного выпрямителя
Рис.9.2. Временные зависимости мгновенных напряжений и тока
Действующее значение переменного напряжения равно среднеквадратному значению переменного напряжения за перод Т, которое определяется из выражения:
,
(9.1)
так
как
.
Таким
образом, действующее значение
синусоидального напряжения связано с
амплитудным значением
напряжения
выражением
.
При
этом амплитуды прямого и обратного
значений мгновенного синусоидального
напряжения равны, то есть
.
Для
измерения выпрямленных значений
напряжения и тока применяются приборы
магнитоэлектрического системы, которые
показывают средние значения напряжения
и тока
.
Средними значениями однополупериодного выпрямителя считают его средние значения напряжения и тока за половину периода. Так, среднее значение
напряжения определяют по выражению:
(9.2)
Аналогично определяют среднее значение тока:
.
(9.3)
Выпрямители характеризуются постоянными составляющими напряжения и тока (средними значениями и ), переменными составляющими, коэффициентом пульсаций и частотой пульсаций.
Кроме
постоянных составляющих
и
,
однополупериодные выпрямители имеют
переменные составляющие тока
и
напряжения
,
равные
амплитудам первых гармоник переменного напряжения (тока) на нагрузке, представленных в виде импульсного напряжения (тока), разложенных в ряд Фурье.
Переменные составляющие напряжения и тока при этом определяется выражениями:
;
.
(9.4)
Коэффициент пульсаций выпрямителя определяется отношением переменных составляющих напряжения (тока) к их постоянным составляющим. При однополупериодном выпрямлении
,
(9.5)
что является недостатком схемы.
Частота пульсаций выпрямителя определяется выражением:
.
(9.6)
Для
однополупериодного выпрямителя частота
пульсаций
равна
50
герц.
Двухполупериодные
выпрямители подразделяются на выпрямители
с нулевым выводом
трансформатора
(рис.9.3) и на мостовые выпрямители
(рис.9.4). На рис.9.5 показаны временные
зависимости мгновенных напряжений
(для схемы рис.9.3) и мгновенного напряжения
(для схемы рис.9.4) на входе выпрямителей,
а также мгновенных значений напряжения
и тока
на выходе обоих выпрямителей.
Рис.9.3. Двухполупериодный выпрямитель с нулевым выводом трансформатора
Рис.9.4. Двухполупериодный мостовой выпрямитель
Рис.9.5. Временные зависимости мгновенных напряжений и тока двухполупериодных выпрямителей
Схемы представленных выпрямителей работают только при положительных потенциалах напряжений в точках а и б. Если в течение первого полупериода в точках а, будут положительные потенциалы, то в точках б – отрицательные. В этом случае токи нагрузок от точек с положительными потенциалами будут проходить в направлениях к точкам с отрицательными потенциалами через диоды VD1 (рис.9.3) и VD1,VD3 (рис.9.4). Во второй полупериод в точках а будут отрицательные потенциалы, а в точках б – положительные. Тогда токи нагрузок пойдут через диоды VD2 (рис.9.3) и VD2,VD4 (рис.9.4). Следовательно, в первый и во второй полупериоды переменного тока через нагрузочные сопротивления схем проходят пульсирующие токи в одном положительном направлении.
При двухполупериодном выпрямлении цикл выпрямления m=2. Электромагнитные вольтметры, подключенные к вторичным обмоткам трансформаторов, покажут действующие значения напряжений .
Для измерений выпрямленных значений напряжений и токов применяют приборы магнитоэлектрческой системы, которые показывают средние значения пульсирующих напряжений и токов:
(9.7)
Недостатком
схемы выпрямителя с нулевым выводом
трансформатора является величина
обратного напряжения, действующего на
диод:
тогда
как для схемы мостового выпрямителя
величина обратного напряжения,
действующего на каждый диод, равна
амплитудному значению напряжения
вторичной обмотки:
Для
определения коффициента пульсации при
двухполупериодном выпрямлении
пользуются формулой:
тогда
переменная составляющая определяется
как
Частота
пульсаций
=100
герц.