
- •Введение
- •1. Электрические цепи постоянного тока
- •Элементы электрической цепи постоянного тока
- •1.2. Электрический ток, эдс и напряжение
- •1.3. Активные и пассивные элементы электрических цепей. Закон Ома
- •1.4. Источник эдс и источник тока
- •1.5. Законы Кирхгофа
- •1.6. Использование законов Кирхгофа для расчета электрических цепей
- •1.7. Эквивалентные преобразования электрических цепей
- •1.7.1. Последовательное соединение элементов.
- •1.7.2. Параллельное соединение элементов.
- •1.7.3. Смешанное соединение резистивных элементов.
- •1.7.4. Эквивалентные преобразования резистивных элементов треугольником и звездой.
- •1.8. Использование метода узловых потенциалов
- •1.9. Метод контурных токов
- •1.10. Работа и мощность постоянного тока. Закон Джоуля – Ленца
- •2. Электрические цепи переменного тока
- •2.1. Генерация синусоидальной эдс. Основные величины, характеризующие переменный ток
- •2.2. Представление синусоидальных величин аналитически, графически, вращающимися векторами, комплексными числами
- •2.3. Цепь переменного тока с активным сопротивлением
- •2.4. Цепь переменного тока с индуктивностью
- •2.5. Цепь переменного тока с ёмкостью
- •2.6. Цепь переменного тока с активным сопротивлением и индуктивностью
- •2.7. Цепь переменного тока с активным сопротивлением и ёмкостью
- •2.8. Неразветвлённая цепь переменного тока с активным сопротивлением, индуктивностью и ёмкостью. Резонанс напряжений
- •2.9. Разветвленная цепь однофазного переменного тока. Резонанс токов
- •2.10. Колебательный lc - контур переменного тока
- •2.11. Коэффициент мощности
- •3. Трёхфазные электрические цепи
- •3.1. Преимущество трёхфазного тока. Принцип получения трёхфазной эдс
- •3.2.2. Отсутствие нулевого провода
- •3.3. Обрыв фазы и короткое замыкание фазы без нулевого провода при соединении источников энергии и потребителей звездой
- •3.3.1. Обрыв фазы a
- •3.3.2. Короткое замыкание фазы a
- •3.4. Соединение источников и приёмников электроэнергии треугольником. Соотношения между фазными и линейными напряжениями и токами при симметричной и несимметричной нагрузках
- •3.5. Обрыв фаз и обрыв линейного провода при соединении источников и потребителей треугольником
- •3.5.1. Обрыв фазы ab
- •3.5.2. Обрыв фаз ab и bc
- •3.5.3. Обрыв линейного провода
- •3.6. Мощность трёхфазной цепи
- •3.7. Соотношения активных мощностей при симметричной нагрузке и при соединении звездой и треугольником
- •3.8. Вращающееся магнитное поле трёхфазной системы переменного тока
- •4. Трансформаторы
- •4.1. Назначение, области применения, устройство и принцип действия однофазного трансформатора
- •4.2. Режимы работы трансформатора. Коэффициент полезного действия трансформатора
- •4.3. Трёхфазные трансформаторы
- •4.4. Измерительные трансформаторы
- •5. Электрические измерения
- •5.1. Методы измерения. Погрешности измерения и классы точности
- •5.2. Приборы магнитоэлектрической системы
- •5.3. Приборы электромагнитной системы
- •5.4. Приборы электродинамической системы
- •5.5. Цифровые измерительные приборы
- •5.6. Логометры
- •5.7. Индукционные приборы
- •5.8. Измерение мощности в трёхфазных цепях
- •5.9. Омметры. Мегомметры
- •10. Измерение ёмкости и индуктивности
- •6. Электрические машины постоянного тока
- •6.1. Устройство и принцип действия генератора постоянного тока
- •6.2. Генераторы постоянного тока независимого и параллельного
- •6.3. Генераторы постоянного тока последовательного и смешанного возбуждений и их основные характеристики
- •6.4. Принцип действия электродвигателя постоянного тока
- •6.5. Электродвигатели постоянного тока параллельного возбуждения
- •6.6. Электродвигатели постоянного тока последовательного и смешанного возбуждений и их основные характеристики
- •6.7. Пуск, регулирование частоты вращения и реверс электродвигателей постоянного тока
- •7.Трёхфазные асинхронные машины
- •7.2. Зависимость частоты вращения ротора, величины эдс и тока
- •7.3. Электромагнитный момент и механическая характеристика
- •7.4. Пуск асинхронных двигателей (трёхфазных и однофазных)
- •7.5. Регулирование частоты вращения трёхфазного асинхронного двигателя
- •7.6. Реверс и способы управления асинхронными двигателями
- •8. Полупроводниковые приборы
- •8.1. Электропроводность полупроводников
- •8.2. Полупроводниковые диоды. Устройство, принцип действия
- •8.3. Биполярные транзисторы. Устройство, принцип работы
- •8.4. Схемы включения биполярных транзисторов с p-n-p структурой
- •8.5. Полевые транзисторы с управляющим p-n переходом
- •8.6. Полевые мдп-транзисторы с индуцированным каналом p-типа
- •8.7. Полевые мдп-транзисторы с индуцированным каналом n-типа
- •8.8. Динисторы, тиристоры. Устройство, принцип действия
- •8.9. Симисторы. Устройство, принцип действия
- •8.10. Фоторезисторы и фотодиоды. Устройство, принцип действия
- •8.11. Фототранзисторы, фототиристеры, оптроны.
- •9. Схемы электронных преобразователей
- •9.1. Однополупериодные и двухполупериодные выпрямители
- •9.2. Трёхфазные выпрямители. Электрические сглаживающие фильтры
- •9.3. Электронные уилители.
- •9.4. Усилительные каскады на биполярных транзисторах
- •9.5. Усилители постоянного тока
- •9.6. Импульсные усилители
- •9.7. Операционные усилители
- •10. Цифровые устройства
- •10.1. Логические функции, логически устройства.
- •10.2. Основные логические элементы.
- •4. Логический элемент или, операция логическое сложение ,
- •10.3. Диодные логические элементы или, и
- •10.4. Транзисторный логический элемент не. Логический элемент и-не транзисторно-транзисторной логики
- •10.5. Логический элемент или-не эмиттерно-связанной логики
- •10.6. Асинхронный rs-триггер. Устройство, принцип действия
- •10.7. Синхронный rs-триггер. Устройство, принцип действия
- •10.8. Синхронные d и t-триггеры. Устройство, принцип действия
- •10.9. Синхронный jк - триггер. Устройство, принцип действия
- •10.10. Шифратор. Устройство, принцип работы
- •10.11. Дешифратор. Устройство, принцип работы
- •10.12. Регистры. Устройство, принцип работы
- •10.13. Счётчики импульсов. Устройство, принцип работы
- •10.14. Сумматоры. Устройство, принцип работы
- •10.15. Аналого-цифровые и цифро-аналоговые преобразователи
- •10.16. Микропроцессоры и микропроцессорные системы
- •Cодержание
- •Иванов Евгений Николаевич электротехника и электроника Учебное пособие
2.7. Цепь переменного тока с активным сопротивлением и ёмкостью
Рассмотрим электрическую схему цепи с активным сопротивлением и ёмкостью (рис. 2.26).
Рис.2.26. Цепь переменного тока с активным сопротивлением и ёмкостью
Зададимся
током
,
тогда
.
На основании приведенных выражений
построим векторную диаграмму цепи
(рис.2.27) для действующих значений
напряжений
.
Рис.2.27. Векторная диаграмма действующих значений тока и напряжения цепи переменного тока с активным сопротивлением и ёмкостью
Из
векторной диаграммы следует, что
.
Но
,
где
-
емкостное сопротивление. Таким
образом,
,
откуда:
.
(2.30)
На рис. 2.28 изображен треугольник сопротивлений. Сдвиг фаз (угол ) в этом случае отрицателен, так как напряжение отстает по фазе от тока:
.
(2.31)
Пусть
,
тогда мгновенная мощность в цепи с R
и C
будет:
.
Опустив промежуточные преобразования,
получим:
.
(2.32)
Средняя
или активная мощность определяется
постоянной составляющей мгновенной
мощности:
.
Рис.2.28. Треугольник сопротивлений цепи переменного тока с активным сопротивлением и ёмкостью
Реактивная
емкостная мощность характеризует
интенсивность обмена энергий между
источником и ёмкостью:
.
Так как
<
0,
то реактивная мощность
< 0.
Полная мощность определяется из
треугольника мощностей (рис. 2.29):
.
Рис.2.29. Треугольник мощностей
2.8. Неразветвлённая цепь переменного тока с активным сопротивлением, индуктивностью и ёмкостью. Резонанс напряжений
Рассмотрим неразветвлённую электрическую цепь (рис. 2.30).
Пусть
,
тогда
.
Построим
векторную диаграмму при условии, что
действующие значения напряжений
Из
векторной диаграммы (рис.2.31) следует:
,
откуда
.
Но
,
следовательно
.
Рис.2.30. Схема неразветвлённой электрической цепи с активным сопротивлением, индуктивностью и ёмкостью
Рис.2.31.
Векторная диаграмма действующих значений
тока и напряжений
для
цепи переменного тока с активным
сопротивлением, индуктивностью и
ёмкостью, в которой (
)
Введя
обозначение полного сопротивления цепи
,
найдем:
.
(2.33)
Разность между индуктивным и емкостным сопротивлениями называют реактивным сопротивлением цепи X = XL - XC. Учитывая это, получим треугольник сопротивлений для цепи с R, L и C (рис. 2.32).
При XL > XC реактивное сопротивление положительно и угол > 0.
Аналогично
можно построить векторную диаграмму
для действующих значений напряжений
(рис. 2.33) и треугольник сопротивлений
(рис. 2.34).
Рис.2.32.
Треугольник сопротивлений цепи
переменного тока с активным сопротивлением,
индуктивностью и ёмкостью (
)
Рис.2.33. Векторная диаграмма действующих значений тока и напряжений
(
)
цепи переменного тока с активным
сопротивлением, индуктивностью и
ёмкостью
Рис.2.34.
Треугольник сопротивлений цепи
переменного тока с активным сопротивлением,
индуктивностью и ёмкостью (
)
При XL < XC реактивное сопротивление X отрицательно и угол < 0. Если UL = UC и XL = XC , то векторную диаграмму можно представить в виде рис. 2.35, а зависимость тока от частоты в виде рис.2.36.
В этом случае наступает резонанс напряжений, когда ток в цепи совпадает по фазе с напряжением источника. При этом угол = 0, так как реактивное сопротивление равно нулю.
Рис.2.35.
Векторная диаграмма резонанса напряжений
Рис.2.36. Зависимость тока от частоты питающей сети для резонанса напряжений
При
резонансе напряжений частота источника
равна собственной частоте колебаний
LC-контура.
Если
,
где f
-
частота источника питания, то можно
записать
.
Решив это уравнение относительно f,
получим
.
(2.34)
На основании рис.2.35, 2.36 следует, что признаками резонанса напряжений являются:
а) полное сопротивление цепи равно активному сопротивлению Z = R;
б) ток в цепи совпадает по фазе с напряжением источника и имеет максимальное значение;
в) напряжение на индуктивной катушке равно напряжению на конденсаторе и каждое в отдельности превышает напряжение источника;
г) коэффициент мощности cos = 1.
На рис.2.37 изображены примерные функциональные зависимости индуктивных и емкостных напряжений, тока и коэффициента мощности в зависимости от изменения ёмкости конденсатора, где Cp - резонансная ёмкость.
Рис.2.37. Примерное изображение зависимостей UL, UC, , cos от изменения ёмкости конденсатора C
Количественная оценка соотношения энергий источника, катушки индуктивности и конденсатора при резонансе напряжений характеризуется добротностью контура:
.
(2.35)
Величину
при резонансе называют волновым
сопротивлением контура.