
- •Вопросы к итоговому контролю знаний по учебной дисциплине «химия» (экзамен)
- •Основные понятия химии.
- •Основные законы химии.
- •Примеры химических систем.
- •Роль достижений химии в развитии цивилизации.
- •Возникновение химической науки. Примеры химических теорий.
- •Этапы развития химических знаний. Учение о составе вещества, структурная химия, учение о закономерностях химических процессов, эволюционная химия.
- •1960–80-Е гг. Из каменноугольной смолы и аммиака были получены новые
- •Модели атомов.
- •Экспериментальные доказательства существования атомов.
- •Спектры излучения и поглощения атомов. Спектральный анализ.
- •Квантовые числа электронов в атомах. Электронные облака.
- •Строение атомного ядра.
- •Дефект масс и энергия связи ядра.
- •Строение электронных оболочек атомов. Принцип Паули. Правило Хунда.
- •Систематика химических элементов. Периодический закон д.И.Менделеева.
- •Периодические свойства химических элементов.
- •Строение молекул и химическая связь. Квантово-механическое описание химической связи.
- •Виды химической связи.
- •Ионная связь
- •Ковалентная связь
- •Металлическая связь
- •Водородная связь
- •Ковалентная химическая связь.
- •Ионная химическая связь.
- •Водородная химическая связь.
- •Металлическая химическая связь.
- •Межмолекулярные взаимодействия.
- •Агрегатные состояния вещества.
- •Основы химической термодинамики
- •Основы химической кинетики.
- •Тепловой эффект химических реакций и использование химической энергии.
- •Управление скоростью химических реакций.
- •Гомогенные и гетерогенные химические реакции.
- •Закон действующих масс и его применение.
- •Зависимость скорости химической реакции от температуры.
- •Сложные химические реакции.
- •Способы смещения химического равновесия.
- •Биокатализ и ферменты.
- •Цепные химические реакции, горение, взрыв.
- •Примеры биохимических процессов.
- •Химический синтез белков.
- •Биологические макромолекулы и их свойства.
Модели атомов.
Атом— наименьшая химически неделимая часть химического элемента, являющаяся носителем его свойств.
Модели атомов
Кусочки материи. Демокрит полагал, что свойства того или иного вещества определяются формой, массой, и пр. характеристиками образующих его атомов. Так, скажем, у огня атомы остры, поэтому огонь способен обжигать, у твёрдых тел они шероховаты, поэтому накрепко сцепляются друг с другом, у воды — гладки, поэтому она способна течь. Даже душа человека, согласно Демокриту, состоит из атомов.
Модель атома Томсона (модель «Пудинг с изюмом», англ. Plum pudding model). Дж. Дж. Томсон предложил рассматривать атом как некоторое положительно заряженное тело с заключёнными внутри него электронами. Была окончательно опровергнута Резерфордом после проведённого им знаменитого опыта по рассеиванию альфа-частиц.
Ранняя планетарная модель атома Нагаоки. В 1904 году японский физик Хантаро Нагаока предложил модель атома, построенную по аналогии с планетой Сатурн. В этой модели вокруг маленького положительного ядра по орбитам вращались электроны, объединённые в кольца. Модель оказалась ошибочной.
Планетарная модель атома Бора-Резерфорда. В 1911 году[3] Эрнест Резерфорд, проделав ряд экспериментов, пришёл к выводу, что атом представляет собой подобие планетной системы, в которой электроны движутся по орбитам вокруг расположенного в центре атома тяжёлого положительно заряженного ядра («модель атома Резерфорда»). Однако такое описание атома вошло в противоречие с классической электродинамикой. Дело в том, что, согласно классической электродинамике, электрон при движении с центростремительным ускорением должен излучать электромагнитные волны, а, следовательно, терять энергию. Расчёты показывали, что время, за которое электрон в таком атоме упадёт на ядро, совершенно ничтожно. Для объяснения стабильности атомов Нильсу Бору пришлось ввести постулаты, которые сводились к тому, что электрон в атоме, находясь в некоторых специальных энергетических состояниях, не излучает энергию («модель атома Бора-Резерфорда»). Постулаты Бора показали, что для описания атома классическая механика неприменима. Дальнейшее изучение излучения атома привело к созданию квантовой механики, которая позволила объяснить подавляющее большинство наблюдаемых фактов.
Экспериментальные доказательства существования атомов.
Роберт Броун — британский (шотландский) ботаник конца XVIII — первой половины XIX века, морфолог и систематик растений, первооткрыватель «броуновского движения».
Бро́уновское движе́ние — в естествознании, беспорядочное движение микроскопических, видимых, взвешенных в жидкости (или газе) частиц (броуновские частицы) твёрдого вещества (пылинки, крупинки взвеси, частички пыльцы растения и так далее), вызываемое тепловым движением частиц жидкости (или газа). Не следует смешивать понятия «броуновское движение» и «тепловое движение»: броуновское движение является следствием и свидетельством существования теплового движения.
В результате открытия броуновского движения было впервые косвенно подтверждено существование атома.
Длинный путь пройден от первой атомной теории Дальтона, в которой предполагалось, что атомы представляют собой элементарные кирпичики и что мир состоит из определенного числа атомов различных сортов с характерными свойствами, вечными и неизменными. Эти представления особенно изменились после открытия электрона. Все атомы должны содержать электроны. Но как электроны в них расположены? Физики могли лишь философствовать, исходя из своих познаний в области классической физики, и постепенно все точки зрения сошлись на одной модели, предложенной Джозефом Джоном Томсоном (1856—1940). Согласно этой модели, атом состоит из положительно заряженного вещества, внутрь которого вкраплены электроны (возможно, они находятся в интенсивном движении), так что атом напоминает пудинг с изюмом. Томсоновскую модель атома нельзя было непосредственно проверить, но в ее пользу свидетельствовали всевозможные аналогии.
Трудность заключалась в том, чтобы найти прямой подход к исследованию атомов. Такой подход появился не в результате целенаправленных поисков, а благодаря случайному наблюдению явления совсем иного рода. Это было открытие радиоактивности, сделанное французским физиком Антуаном Анри Беккерелем.