
- •Вопросы к итоговому контролю знаний по учебной дисциплине «химия» (экзамен)
- •Основные понятия химии.
- •Основные законы химии.
- •Примеры химических систем.
- •Роль достижений химии в развитии цивилизации.
- •Возникновение химической науки. Примеры химических теорий.
- •Этапы развития химических знаний. Учение о составе вещества, структурная химия, учение о закономерностях химических процессов, эволюционная химия.
- •1960–80-Е гг. Из каменноугольной смолы и аммиака были получены новые
- •Модели атомов.
- •Экспериментальные доказательства существования атомов.
- •Спектры излучения и поглощения атомов. Спектральный анализ.
- •Квантовые числа электронов в атомах. Электронные облака.
- •Строение атомного ядра.
- •Дефект масс и энергия связи ядра.
- •Строение электронных оболочек атомов. Принцип Паули. Правило Хунда.
- •Систематика химических элементов. Периодический закон д.И.Менделеева.
- •Периодические свойства химических элементов.
- •Строение молекул и химическая связь. Квантово-механическое описание химической связи.
- •Виды химической связи.
- •Ионная связь
- •Ковалентная связь
- •Металлическая связь
- •Водородная связь
- •Ковалентная химическая связь.
- •Ионная химическая связь.
- •Водородная химическая связь.
- •Металлическая химическая связь.
- •Межмолекулярные взаимодействия.
- •Агрегатные состояния вещества.
- •Основы химической термодинамики
- •Основы химической кинетики.
- •Тепловой эффект химических реакций и использование химической энергии.
- •Управление скоростью химических реакций.
- •Гомогенные и гетерогенные химические реакции.
- •Закон действующих масс и его применение.
- •Зависимость скорости химической реакции от температуры.
- •Сложные химические реакции.
- •Способы смещения химического равновесия.
- •Биокатализ и ферменты.
- •Цепные химические реакции, горение, взрыв.
- •Примеры биохимических процессов.
- •Химический синтез белков.
- •Биологические макромолекулы и их свойства.
Примеры биохимических процессов.
Биохимические процессы в организме основываются на молекулярном строении вещества, атомы которого соединены разными связями. При этом атомы одних веществ несут на себе положительный заряд, другие - отрицательный. При определенных условиях, делающих возможным течение химических реакций, молекулы веществ обмениваются своими составляющими (атомами или ионами). В результате комбинации атомов и молекул образуются тысячи новых химических веществ. При этом может создаться впечатление, что вещества в клетке находятся в относительном покое. Однако молекулы веществ, подобно персонажам какого-нибудь светского бала, перемещаются в заданных направлениях, периодически обмениваясь между собой партнерами. При рассмотрении функционирования клетки и ее составляющих (мембраны, цитоплазмы, органелл, ядра), в том числе генетического аппарата с биохимической точки зрения все происходящие в них процессы сводятся к разрыву одних химических связей и образованию других. Это дает возможность клетке поддерживать свою жизнедеятельность получая энергию, необходимую для поддержания подсистемы жизнеобеспечения, и выполняя специфические функции. Биохимические процессы являются основой обмена веществ. Конечной целью всех биохимических реакций, протекающих в организме, является выполнение двух основных функций. Первая из них - обеспечение постоянства внутренней среды (гомеостаза), непосредственное поддержание стабильности “подсистемы жизнеобеспечения”. Вторая - выполнение специальных функций, заключающихся в реагировании на определенные внешние воздействия (например, проведение нервного импульса нейроном, выработка гормона, перенос кислорода эритроцитом, сокращение мышечной клетки).
Репликация ДНК. процесс синтеза дочерней молекулы дезоксирибонуклеиновой кислоты, идущий во время синтетической (S) фазы жизненного цикла клетки на матрице родительской молекулы ДНК. При этом генетический материал, зашифрованный в ДНК, удваивается и в процессе последующего деления делится между дочерними клетками. Репликацию ДНК осуществляет сложный ферментный комплекс, состоящий из 15-20 различных белков.
Фотосинтез (все это помним) переход физ (кинетической) в хим (потенциальную) энергию…
Расщепление белков, углеводов в желудке. Пепсин в желудке является неспецифической эндопептидазой, расщепляющей белки на более мелкие пептиды. Проэнзимы секрета поджелудочной железы активируются дуоденальной энтерокиназой при попадании в кишечник, и затем трипсин продолжает активировать самого себя и другие энзимы. Трипсин и химотрипсин расщепляют белки на более мелкие пептиды, в то время как карбоксипептидаза А и В расщепляют конечные аминокислоты из этих пептидов. Конечным результатом такого внутрипросветного пищеварения являются некоторые свободные аминокислоты, но преимущественно мелкие пептиды. Внутренние соединения белков расщепляются эластазой, а нуклеиновые кислоты — некоторыми другими энзимами, такими как рибонуклеаза и дезоксирибонуклеаза.
Химический синтез белков.
Белки — высокомолекулярные органические вещества, состоящие из соединённых в цепочку пептидной связью альфа-аминокислот. В живых организмах аминокислотный состав белков определяется генетическим кодом, при синтезе в большинстве случаев используется 20 стандартных аминокислот. Множество их комбинаций дают большое разнообразие свойств молекул белков. Короткие белки могут быть синтезированы химическим путём с помощью группы методов, которые используют органический синтез — например, химическое лигирование. Большинство методов химического синтеза проходят в направлении от C-конца к N-концу, в противоположность биосинтезу. Таким образом можно синтезировать короткий иммунногенный пептид (эпитоп), служащий для получения антител путём инъекции в животных, или получения гибридо́м; химический синтез также используется для получения ингибиторов некоторых ферментов[21]. Химический синтез позволяет вводить искусственные, то есть не встречающиеся в обычных белках аминокислоты — например, присоединять флюоресцентные метки к боковым цепям аминокислот. Однако химические методы синтеза неэффективны при длине белков более 300 аминокислот; кроме того, искусственные белки могут иметь неправильную третичную структуру, и у аминокислот искусственных белков отсутствуют посттрансляционные модификации.