
- •1.Физика и ее предмет. Методология науки. Структура физики. Связь физики с другими науками.
- •2.Кинематика поступательного движения. Кинематика вращательного движения.
- •3.Законы Ньютона.
- •4.Принцип относительности Галилея.
- •5. Силы в природе.
- •6. Закон сохранения импульса. Центр масс систем. Энергия и работа. Мощность.
- •7. Кинетическая и потенциальная энергия. Потенциальная энергия в поле тяжести Земли.
- •10.Момент силы. Закон динамики вращательного движения.
- •11.Момент импульса. Закон сохранения момента импульса.
- •12.Кинетическая энергия вращающегося тела. Работа при вращательном движении.
- •13.Постулаты сто. Преобразования Лоренца и следствия из них.
- •18.Распределение молекул по скоростям (распределение Максвелла).
- •19.Барометрическая формула. Распределение Больцмана.
- •24.Второе начало термодинамики и его различные формулировки.
- •25.Энтропия и вероятность состояния. Закон возрастания энтропии.
- •26. Электрический заряд. Дискретность электричества. Элементарный заряд. Закон сохранения электрического заряда.
- •27. Закон Кулона и границы его применимости.
- •28.Электростатическое поле и его силовые характеристики. Напряженность поля точечного заряда. Принцип суперпозиции.
- •29.Работа по перемещению заряда в электростатическом поле.
- •30.Потенциал. Потенциал поля точечного заряда и системы зарядов. Связь между напряженностью и потенциалом.
- •35. Сопротивление. Удельное сопротивление. Зависимость сопротивления от температуры. Соединение сопротивлений и расчет сопротивления батарей.
- •Параллельное соединение
- •Количество теплоты, выделяемое в единицу времени в рассматриваемом участке цепи, пропорционально произведению квадрата силы тока на этом участке и сопротивлению участка.
- •43.Движение заряженных частиц в однородном магнитном поле. Сила Лоренца. Ее величина, направление и использование для управления движением заряженных частиц.
- •44. Явление электромагнитной индукции (опыты Фарадея). Эдс индукции. Правило Ленца.
- •45.Самоиндукция и индуктивность. Проявление индуктивности в электрических цепях.
- •48. Электрический колебательный контур. Собственные колебания. Формула Томсона.
- •49.Затухающие колебания. Уравнение, график и характеристики.
- •50. Вынужденные колебания. Резонанс.
- •Для полного понимания электрических процессов в цепях переменного тока приводим Закон Ома для переменного тока. Он отличается от закона для цепей постоянного тока!
- •54. Уравнение плоской электромагнитной волны и ее характеристики. Шкала электромагнитных излучений.
- •55.Плотность энергии электромагнитного поля. Поток и плотность потока энергии электромагнитного поля.
- •56.Основные законы геометрической оптики.
- •61.Тепловое излучение и его характеристики. Законы Кирхгофа и Стефана-Больцмана.
- •64.Внешний фотоэффект и его законы.
- •65. Фотоны. Энергия, импульс и масса фотона. Уравнение Эйнштейна для фотоэффекта.
- •66.Давление света. Опыты Лебедева. Квантовое и волновое объяснение давления света.
- •67.Эффект Комптона.
- •70. Постулаты Бора. Теория атома водорода по Бору, ее успехи и трудности.
- •71.Соотношение неопределенностей Гейзенберга. Границы применимости классической механики.
- •Основные положения
- •Подуровень, характеризующийся значением
- •75.Тормозное и характеристическое рентгеновское излучение.
- •76.Состав ядра. Характеристика ядра. Изотопы.
- •Перечислим основные характеристики ядер,:
- •77.Ядерные силы. Их свойства и природа.
- •80.Виды радиоактивного распада и их реакции. Превращение нуклонов.
- •81.Реакции деления ядер. Реакции синтеза ядер.
- •82.Общие сведения об элементарных частицах. Классификация элементарных частиц. Фундаментальные частицы.
- •83.Фундаментальные взаимодействия и их краткая характеристика. Переносчики фундаментальных взаимодействий.
80.Виды радиоактивного распада и их реакции. Превращение нуклонов.
Радиоакти́вный распа́д — спонтанное изменение состава нестабильных атомных ядер путём испускания элементарных частиц или ядерных фрагментов.
Альфа – распад
В результате альфа-распада радиоактивный элемент превращается в другой элемент, порядковый номер которого на 2 единицы, а массовое число на 4 единицы, меньше.
Бета-распад
Такой процесс распада нейтронов характерен для ядер с большим количеством нейтронов.
В результате бета-распада образуется новое ядро с таким же массовым числом, но с большим на единицу зарядом.
Гамма - распад - не существует
В процессе радиоактивного излучения ядра атомов могут испускать гамма-кванты. Испускание гамма-квантов не сопровождается распадом ядра атома. Гамма излучение зачастую сопровождает явления альфа- или бета-распада.
При альфа- и бета-распаде новое возникшее ядро первоначально находится в возбужденном состоянии и , когда оно переходит в нормальное состояние, то испускает гамма-кванты (в оптическом или рентгеновском диапазоне волн).
Пpевpащение
нейтpона в пpотон сопpовождается
поpождением двух новых частиц: электpона
и антинейтpино. Схема pаспада имеет вид:
Пpевpащение
пpотона в нейтpон сопpовождается
поpождением позитpона (антиэлектpона) и
нейтpино, осуществляется по схеме:
81.Реакции деления ядер. Реакции синтеза ядер.
Деле́ние ядра́ — процесс расщепления атомного ядра на два (реже три) ядра с близкими массами, называемых осколками деления. В результате деления могут возникать и другие продукты реакции: лёгкие ядра (в основном альфа-частицы), нейтроны и гамма-кванты. Деление бывает спонтанным (самопроизвольным) и вынужденным (в результате взаимодействия с другими частицами, прежде всего, с нейтронами). Деление тяжёлых ядер — экзотермический процесс, в результате которого высвобождается большое количество энергии в виде кинетической энергии продуктов реакции, а также излучения.
Ядерный синтез — разновидность ядерной реакции, при которой лёгкие атомные ядра объединяются в более тяжёлые ядра.
В то же время, понятие «Ядерный синтез» включает:
- Разделение ядра исходного, более тяжелого элемента обычно на два легких ядра, с образованием новых химических элементов.
- Соединение двух меньших ядер в одно большее, с образованием нового химического элемента.
82.Общие сведения об элементарных частицах. Классификация элементарных частиц. Фундаментальные частицы.
Дать строгое определение понятия элементарных частиц оказывается затруднительным. В качестве первого приближения можно понимать под элементарными частицами такие микрочастицы, внутреннюю структуру которых на современном уровне развития физики нельзя представить как объединение других частиц. Во всех наблюдавшихся до сих пор явлениях каждая такая частица ведёт себя как единое целое. Элементарные частицы могут превращаться друг в друга (протон в нейтрон и наоборот, γ-квант в и наоборот и т.д.). В настоящее время общее число известных элементарных частиц (вместе с античастицами) приближается к 400. Пока мы встречались только с электроном (позитроном ), протоном p, нейтроном n, фотоном γ и электронным (анти) нейтрино ( ). Эти частицы стабильны или квазистабильны, и они существуют в природе в свободном или слабосвязанном состоянии. Так, квазистабильные нейтроны входят в состав атомных ядер, многие из которых являются абсолютно устойчивыми. Почти все остальные элементарные частицы крайне нестабильны и образуются во вторичном космическом излучении или получаются в лаборатории с помощью ускорителей, а затем быстро распадаются, превращаясь в конечном итоге в стабильные частицы. Для описания свойств отдельных элементарных частиц вводится целый ряд физических величин, значениями которых они и различаются. Наиболее известными среди них являются масса, среднее время жизни, спин, электрический заряд, магнитный момент.
По величине спина
Все элементарные частицы делятся на два класса:
- бозоны — частицы с целым спином (например, фотон, глюон, мезоны).
- фермионы — частицы с полуцелым спином (например, электрон, протон, нейтрон, нейтрино);
По видам взаимодействий
Элементарные частицы делятся на следующие группы:
Составные частицы
- адроны — частицы, участвующие во всех видах фундаментальных взаимодействий. Они состоят из кварков и подразделяются, в свою очередь, на:
- мезоны — адроны с целым спином, то есть являющиеся бозонами;
- барионы — адроны с полуцелым спином, то есть фермионы. К ним, в частности, относятся частицы, составляющие ядро атома, — протон и нейтрон.
Фундаментальные (бесструктурные) частицы
- лептоны — фермионы, которые имеют вид точечных частиц (т. е. не состоящих ни из чего) вплоть до масштабов порядка 10−18 м. Не участвуют в сильных взаимодействиях. Участие в электромагнитных взаимодействиях экспериментально наблюдалось только для заряженных лептонов (электроны, мюоны, тау-лептоны) и не наблюдалось для нейтрино. Известны 6 типов лептонов.
- кварки — дробнозаряженные частицы, входящие в состав адронов. В свободном состоянии не наблюдались. Как и лептоны, делятся на 6 типов и считаются бесструктурными, однако, в отличие от лептонов, участвуют в сильном взаимодействии.
- калибровочные бозоны — частицы, посредством обмена которыми осуществляются взаимодействия:
- фотон — частица, переносящая электромагнитное взаимодействие;
- восемь глюонов — частиц, переносящих сильное взаимодействие;
три промежуточных векторных бозона W+, W− и Z0, переносящие слабое взаимодействие;
- гравитон — гипотетическая частица, переносящая гравитационное взаимодействие.
Переносчиком электромагнитного взаимодействия выступает фотон. Теория электромагнитного взаимодействия была представлена квантовой электродинамикой. Переносчики сильного взаимодействия - глюоны. Глюоны - переносчики взаимодействия между кварками, связывающие их попарно или тройками. Переносчики слабого взаимодействия три частицы - W ± и Z ° бозоны. Они были открыты лишь в 1983 г. Радиус слабого взаимодействия чрезвычайно мал, поэтому его переносчиками должны быть частицы с большими массами покоя. Переносчик гравитационного поля - гравитон. Спин гравитона равен 2. В принципе гравитоны можно зафиксировать в эксперименте. Но поскольку гравитационное взаимодействие очень слабое и в квантовых процессах практически не проявляется, то непосредственно зафиксировать гравитоны очень сложно. Каждый вид частиц играет свою роль в формировании структуры материи и Вселенной.