Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
otvety_po_fizike.docx
Скачиваний:
31
Добавлен:
05.08.2019
Размер:
665.88 Кб
Скачать

48. Электрический колебательный контур. Собственные колебания. Формула Томсона.

Колебательный контур — осциллятор, представляющий собой электрическую цепь, содержащую соединённые катушку индуктивности и конденсатор. В такой цепи могут возбуждаться колебания тока. Колебательный контур — простейшая система, в которой могут происходить свободные электромагнитные колебания

Резонансная частота контура определяется так называемой формулой Томсона: Колебательный контур состоит из двух основных частей: катушки индуктивности и конденсатора. Катушка представляет собой некоторое число витков медной проволоки, а простейший конденсатор – две металлические пластинки, разделённые слоем диэлектрика. Чем больше площадь пластин и чем ближе они расположены одна к другой, тем при прочих равных условиях большей электрической ёмкостью обладает конденсатор. На величину ёмкости влияет и то, из какого вещества состоит диэлектрик. Конденсатор заряжают от какого-то источника тока, затем подключают катушку индуктивности. Конденсатор разряжается, но в силу индуктивности катушки ток в контуре нарастает постепенно, а потом начнет заряжать конденсатор (в противоположном направлении), и так будет колебаться довольно долго, смотря что за конденсатор поставили. Колебания в контуре, происходящие без какого-либо влияния со стороны, чрезвычайно кратковременны. Это объясняется тем, что электрический ток нагревает провода катушки. При этом энергия электрических колебаний превращается в тепло, которое рассеивается. Потери эти неизбежны, поэтому колебания в контуре быстро затухают. Для того чтобы получить незатухающие колебания, нужно особое устройство, которое подает к колебательному контуру всё новые и новые порции энергии.

Собственные колебания, свободные колебания, колебания в механической, электрической или какой-либо другой физической системе, совершающиеся при отсутствии внешнего воздействия за счёт первоначально накопленной энергии (вследствие наличия начального смещения или начальной скорости). Характер С. к. определяется главным образом собственными параметрами системы (массой, индуктивностью, ёмкостью, упругостью). В реальных системах вследствие рассеяния энергии С. к. всегда затухающие, а при больших потерях они становятся апериодическими. Простейшими примерами свободных колебания являются колебания груза, прикреплённого к пружине, или груза, подвешенного на нити.

Формула Томсона - формула, выражающая зависимость периода незатухающих собственных колебаний, возникающих в колебательном контуре, от индуктивности и емкости этого контура.

49.Затухающие колебания. Уравнение, график и характеристики.

Затухающие колебания — колебания, энергия которых уменьшается с течением времени. Бесконечно длящийся процесс вида Обычно затухание происходит под действием сил сопротивления среды, наиболее часто выражаемых линейной зависимостью от скорости колебаний или её квадрата.

Получим дифференциальное уравнение свободных затухающих колебаний на примере реального пружинного маятника, совершающего колебания в среде с сопротивлением (простейший случай - трение о воздух). Пусть масса маятника m, коэффициент упругости пружины k, сила сопротивления, действующая на маятник, F = - bv, v - скорость маятника, b - коэффициент сопротивления среды, в которой находится маятник. Так как мы рассматриваем только линейные системы, b = const, k = const. x - смещение маятника от положения равновесия. Второй закон Ньютона в нашем случае запишется так: Это уравнение и есть дифференциальное уравнение свободных затухающих колебаний пружинного маятника. Его, однако, принято записывать в следующем, так называемом каноническом виде: ,где - коэффициент затухания, - собственная частота свободных (незатухающих) колебаний пружинного маятника, то, что раньше мы обозначали просто w.

Уравнение затухающих колебаний в таком (каноническом) виде описывает затухающие колебания всех линейных систем; конкретная колебательная система отличается только выражениями для b и j0.

Экспериментальный график затухающих колебаний при малом коэффициенте затухания представлен на рис. 7.6. Из рис. 7.6 видно, что график зависимости x=x(t). выглядит как косинус, умноженный на некоторую функцию, которая убывает со временем. Эта функция представлена на рисунке штриховыми линиями. Простой функцией, которая ведет себя подобным образом, является экспоненциальная функция

Чем меньше силы трения в системе, тем медленнее затухают колебания, тем лучше колебательная система. Для характеристики качества колебательной системы вводится ряд параметров:

t = 1/b - время релаксации затухающих колебаний (за t амплитуда уменьшается в e раз). - логарифмический декремент затухания; N - число колебаний, в течение которых амплитуда уменьшается в e раз. Соответственно, exp(bT) - просто декремент затухания. - добротность колебательной системы; W(t) - энергия (полная) колебательной системы в момент времени t.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]