
- •1.Физика и ее предмет. Методология науки. Структура физики. Связь физики с другими науками.
- •2.Кинематика поступательного движения. Кинематика вращательного движения.
- •3.Законы Ньютона.
- •4.Принцип относительности Галилея.
- •5. Силы в природе.
- •6. Закон сохранения импульса. Центр масс систем. Энергия и работа. Мощность.
- •7. Кинетическая и потенциальная энергия. Потенциальная энергия в поле тяжести Земли.
- •10.Момент силы. Закон динамики вращательного движения.
- •11.Момент импульса. Закон сохранения момента импульса.
- •12.Кинетическая энергия вращающегося тела. Работа при вращательном движении.
- •13.Постулаты сто. Преобразования Лоренца и следствия из них.
- •18.Распределение молекул по скоростям (распределение Максвелла).
- •19.Барометрическая формула. Распределение Больцмана.
- •24.Второе начало термодинамики и его различные формулировки.
- •25.Энтропия и вероятность состояния. Закон возрастания энтропии.
- •26. Электрический заряд. Дискретность электричества. Элементарный заряд. Закон сохранения электрического заряда.
- •27. Закон Кулона и границы его применимости.
- •28.Электростатическое поле и его силовые характеристики. Напряженность поля точечного заряда. Принцип суперпозиции.
- •29.Работа по перемещению заряда в электростатическом поле.
- •30.Потенциал. Потенциал поля точечного заряда и системы зарядов. Связь между напряженностью и потенциалом.
- •35. Сопротивление. Удельное сопротивление. Зависимость сопротивления от температуры. Соединение сопротивлений и расчет сопротивления батарей.
- •Параллельное соединение
- •Количество теплоты, выделяемое в единицу времени в рассматриваемом участке цепи, пропорционально произведению квадрата силы тока на этом участке и сопротивлению участка.
- •43.Движение заряженных частиц в однородном магнитном поле. Сила Лоренца. Ее величина, направление и использование для управления движением заряженных частиц.
- •44. Явление электромагнитной индукции (опыты Фарадея). Эдс индукции. Правило Ленца.
- •45.Самоиндукция и индуктивность. Проявление индуктивности в электрических цепях.
- •48. Электрический колебательный контур. Собственные колебания. Формула Томсона.
- •49.Затухающие колебания. Уравнение, график и характеристики.
- •50. Вынужденные колебания. Резонанс.
- •Для полного понимания электрических процессов в цепях переменного тока приводим Закон Ома для переменного тока. Он отличается от закона для цепей постоянного тока!
- •54. Уравнение плоской электромагнитной волны и ее характеристики. Шкала электромагнитных излучений.
- •55.Плотность энергии электромагнитного поля. Поток и плотность потока энергии электромагнитного поля.
- •56.Основные законы геометрической оптики.
- •61.Тепловое излучение и его характеристики. Законы Кирхгофа и Стефана-Больцмана.
- •64.Внешний фотоэффект и его законы.
- •65. Фотоны. Энергия, импульс и масса фотона. Уравнение Эйнштейна для фотоэффекта.
- •66.Давление света. Опыты Лебедева. Квантовое и волновое объяснение давления света.
- •67.Эффект Комптона.
- •70. Постулаты Бора. Теория атома водорода по Бору, ее успехи и трудности.
- •71.Соотношение неопределенностей Гейзенберга. Границы применимости классической механики.
- •Основные положения
- •Подуровень, характеризующийся значением
- •75.Тормозное и характеристическое рентгеновское излучение.
- •76.Состав ядра. Характеристика ядра. Изотопы.
- •Перечислим основные характеристики ядер,:
- •77.Ядерные силы. Их свойства и природа.
- •80.Виды радиоактивного распада и их реакции. Превращение нуклонов.
- •81.Реакции деления ядер. Реакции синтеза ядер.
- •82.Общие сведения об элементарных частицах. Классификация элементарных частиц. Фундаментальные частицы.
- •83.Фундаментальные взаимодействия и их краткая характеристика. Переносчики фундаментальных взаимодействий.
Подуровень, характеризующийся значением
l=0 называется s- подуровнем,
l=1 называется p-подуровнем,
l=2 называется d-подуровнем,
l=3 называется f-подуровнем.
В) ml – магнитное квантовое число, определяет ориентацию орбиталей в пространстве и принимает значения ml = -l…0…+1.
Г) ms – спиновое квантовое число, определяет направление вращения электрона вокруг своей оси и принимает только два значения +1/2 или-1/2.
7. Спин S – собственный момент импульса движения электрона. Это – внутреннее свойство электрона, которое не связано с движением в пространстве. Спин всех электронов равен 1/2.
8. Согласно принципу Паули: в атоме не может быть двух электронов с одинаковым набором всех четырёх квантовых чисел.
74.Принцип Паули. Распределение электронов в атоме по состояниям.
При́нцип Па́ули (принцип запрета) — один из фундаментальных принципов квантовой механики, согласно которому два и более тождественных фермиона не могут одновременно находиться в одном квантовом состоянии.
Если тождественные частицы имеют одинаковые квантовые числа, то их волновая функция симметрична относительно перестановки частиц. Отсюда следует, что два одинаковых фермиона, входящих в одну систему, не могут находиться в одинаковых состояниях, так как для фермионов волновая функция должна быть антисимметричной. Обобщая опытные данные, В. Паули сформулировал принцип, согласно которому системы фермионов встречаются в природе только в состояниях, описываемых антисимметричными волновыми функциями (квантово-механическая формулировка принципа Паули).
Распределение электронов в атоме подчиняется принципу Паули, который может быть использован в его простейшей формулировке: в одном и том же атоме не может быть более одного электрона с одинаковым набором четырех квантовых чисел n, l, ml и ms, т. е.
где Z (n, l, ml, ms) - число электронов, находящихся в квантовом состоянии, описываемом набором четырех квантовых чисел: n, l, ml, ms. Таким образом, принцип Паули утверждает, что два электрона, связанные в одном и том же атоме, различаются значениями по крайней мере одного квантового числа.
Совокупность электронов в многоэлектронном атоме, имеющих одно и то же главное квантовое число n, называют электронной оболочкой. В каждой из оболочек электроны распределяются по подоболочкам, соответствующим данному l. Поскольку .орбитальное квантовое число принимает значения от 0 до n - 1, число подоболочек равно порядковому номеру n оболочки. Количество электронов в подоболочке определяется магнитным и магнитным спиновым квантовыми числами: максимальное число электронов в подоболочке с данным l равно 2(2l + 1).
75.Тормозное и характеристическое рентгеновское излучение.
Тормозное рентгеновское излучение возникает при торможении электронов, движущихся с большой скоростью, электрическими полями атомов анода. Условия торможения отдельных электронов не одинаковы. В результате в энергию рентгеновского излучения переходят различные части их кинетической энергии.
Спектр тормозного рентгеновского излучения не зависит от природы вещества анода. Как известно, энергия фотонов рентгеновских лучей определяет их частоту и длину волны. Поэтому тормозное рентгеновское излучение не является монохроматическим. Оно характеризуется разнообразием длин волн, которое может быть представлено сплошным (непрерывным) спектром.
Характеристическое рентгеновское излучение имеет не сплошной, а линейчатый спектр. Этот тип излучения возникает, когда быстрый электрон, достигая анода, проникает во внутренние орбитали атомов и выбивает один из их электронов. В результате появляется свободное место, которое может быть заполнено другим электроном, спускающимся с одной из верхних атомных орбиталей. Такой переход электрона с более высокого на более низкий энергетический уровень вызывает рентгеновское излучение определенной дискретной длины волны. Поэтому характеристическое рентгеновское излучение имеет линейчатый спектр. Частота линий характеристического излучения полностью зависит от структуры электронных орбиталей атомов анода. Линии спектра характеристического излучения разных химических элементов имеют одинаковый вид, поскольку структура их внутренних электронных орбитальных идентична.