Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
attachment.docx
Скачиваний:
4
Добавлен:
05.08.2019
Размер:
139.8 Кб
Скачать

Свойства сверхпроводников

Нулевое электрическое сопротивление

Характер изменения теплоемкости (cv, синий график) и удельного сопротивления (ρ, зеленый), при фазовом переходе в сверхпроводящее состояние

Температурный интервал перехода в сверхпроводящее состояние для чистых образцов не превышает тысячных долей Кельвина и поэтому имеет смысл определённое значение Тс — температуры перехода в сверхпроводящее состояние. Эта величина называется критической температурой перехода. Ширина интервала перехода зависит от неоднородности металла, в первую очередь — от наличия примесей и внутренних напряжений. Известные ныне температуры Тс изменяются в пределах от 0,0005 К у магния (Mg) до 23,2 К у интерметаллида ниобия и германия (Nb3Ge, в плёнке) и 39 К у диборида магния (MgB2) у низкотемпературных сверхпроводников (Тс ниже 77 К, температуры кипения жидкого азота), до примерно 135 К у ртутьсодержащих высокотемпературных сверхпроводников. В настоящее время фаза HgBa2Ca2Cu3O8+d (Hg−1223) имеет наибольшее известное значение критической температуры — 135 К, причем при внешнем давлении 350 тысяч атмосфер температура перехода возрастает до 164 К, что лишь на 19 К уступает минимальной температуре, зарегистрированной в природных условиях на поверхности Земли. Таким образом, сверхпроводники в своём развитии прошли путь от металлической ртути (4.15 К) к ртутьсодержащим высокотемпературным сверхпроводникам (164 К).

Переход вещества в сверхпроводящее состояние сопровождается изменением его тепловых свойств. Однако, это изменение зависит от рода рассматриваемых сверхпроводников. Так, для сверхпроводников Ι рода в отсутствие магнитного поля при температуре перехода Тc теплота перехода (поглощения или выделения) обращается в нуль, а следовательно терпит скачок теплоёмкость, что характерно для фазового перехода ΙΙ рода. Такая температурная зависимость теплоемкости электронной подсистемы сверхпроводника свидетельствует о наличии энергетической щели в распределении электронов между основным состоянием сверхпроводника и уровнем элементарных возбуждений. Когда же переход из сверхпроводящего состояния в нормальное осуществляется изменением приложенного магнитного поля, то тепло должно поглощаться (например, если образец теплоизолирован, то его температура понижается). А это соответствует фазовому переходу Ι рода. Для сверхпроводников ΙΙ рода переход из сверхпроводящего в нормальное состояние при любых условиях будет фазовым переходом ΙΙ рода.

Эффект Мейснера

О его наблюдении сообщили немецкие физики В. Мейснер и Р. Оксенфельд в 1933 году.

До сих пор мы называли сверхпроводимостью исчезновение электрического сопротивления. Однако сверхпроводимость — нечто более сложное, чем просто отсутствие сопротивления. Это еще и определенная реакция на внешнее магнитное поле. Эффект Мейснера заключается в том, что постоянное не слишком сильное магнитное поле выталкивается из сверхпроводящего образца. В толще сверхпроводника магнитное поле ослабляется до нуля, сверхпроводимость и магнетизм можно назвать как бы противоположными свойствами.

При поиске новых сверхпроводников проверяются оба главных свойства сверхпроводимости:

-в сверхпроводнике обращается в нуль электрическое сопротивление;

-из сверхпроводника выталкивается магнитное поле.

В некоторых случаях в «грязных» сверхпроводниках падение сопротивления с температурой может быть гораздо более растянутым, чем это изображено на рис. 1 для ртути. В истории исследований неоднократно бывало так, что физики принимали за сверхпроводимость падение сопротивления по каким-то другим причинам, например вследствие обычного короткого замыкания.

Для доказательства существования сверхпроводимости необходимо наблюдать проявления по меньшей мере обоих главных ее свойств. Весьма эффектный опыт, демонстрирующий присутствие эффекта Мейснера, представлен на рис. 7: постоянный магнит парит над сверхпроводящей чашечкой. Впервые такой опыт осуществил советский физик В. К. Аркадьев в 1945 году.

Рис. 7. Постоянный магнит длиной несколько сантиметров парит на расстоянии чуть больше 1 см над дном сверхпроводящей чашечки, поставленной на три медные ножки. Ножки стоят в жидком гелии, а чашечка находится в парах гелия для поддержания сверхпроводящего состояния

В сверхпроводнике возникают выталкивающие магнитное поле токи, их магнитное поле отталкивает постоянный магнит и компенсирует его вес. Существенны и стенки чашечки, которые отталкивают магнит к центру. Над плоским дном положение магнита неустойчиво, от случайных толчков он уйдет в сторону. Такой парящий магнит напоминает легенды о левитации. Наиболее известна легенда о гробе религиозного пророка. Гроб, помещенный в пещеру, парил там в воздухе без всякой видимой поддержки. Сейчас нельзя с уверенностью сказать, основаны ли подобные рассказы на каких-либо реальных явлениях. В настоящее время с помощью эффекта Мейснера технически возможно «осуществить легенду».

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]