Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Физика.rtf
Скачиваний:
10
Добавлен:
04.08.2019
Размер:
373.03 Кб
Скачать

30)Кинематика движения по криволинейной траектории.Движение по окружности.

Криволинейные движения – движения, траектории которых представляют собой не прямые, а кривые линии. По криволинейным траекториям движутся планеты, воды рек.Криволинейное движение – это всегда движение с ускорением, даже если по модулю скорость постоянна. Криволинейное движение с постоянным ускорением всегда происходит в той плоскости, в которой находятся векторы ускорения и начальные скорости точки. Частным случаем криволинейного движения – является движение по окружности. Движение по окружности, даже равномерное, всегда есть движение ускоренное: модуль скорости все время направлен по касательной к траектории, постоянно меняет направление, поэтому движение по окружности всегда происходит с центростремительным ускорением.

31)Ядерные реакции,деление ядер.Цепные реакции.

Я́дерная реа́кция — процесс образования новых ядер или частиц при столкновениях ядер или частиц. Впервые ядерную реакцию наблюдал Резерфорд в 1919 году, бомбардируя α-частицами ядра атомов азота, она была зафиксирована по появлению вторичных ионизирующих частиц, имеющих пробег в газе больше пробега α-частиц и идентифицированных как протоны. Впоследствии с помощью камеры Вильсона были получены фотографии этого процесса.По механизму взаимодействия ядерные реакции делятся на два вида:

-реакции с образованием составного ядра, это двухстадийный процесс, протекающий при не очень большой кинетической энергии сталкивающихся частиц (примерно до 10 МэВ).

-прямые ядерные реакции, проходящие за ядерное время, необходимое для того, чтобы частица пересекла ядро. Главным образом такой механизм проявляется при очень больших энергиях бомбардирующих частиц.

Деле́ние ядра́ — процесс расщепления атомного ядра на два (реже три) ядра с близкими массами, называемых осколками деления. В результате деления могут возникать и другие продукты реакции: лёгкие ядра (в основном альфа-частицы), нейтроны и гамма-кванты. Деление бывает спонтанным (самопроизвольным) и вынужденным (в результате взаимодействия с другими частицами, прежде всего, с нейтронами). Деление тяжёлых ядер — экзотермический процесс, в результате которого высвобождается большое количество энергии в виде кинетической энергии продуктов реакции, а также излучения. Деление ядер служит источником энергии в ядерных реакторах и ядерном оружии.

Цепные реакции — химические и ядерные реакции, в которых появление активной частицы (свободного радикала или атома в химических, нейтрона в ядерных процессах) вызывает большое число (цепь) последовательных превращений неактивных молекул или ядер. Свободные радикалы и многие атомы, в отличие от молекул, обладают свободными ненасыщенными валентностями (непарным электроном), что приводит к их взаимодействию с исходными молекулами. При столкновении свободного радикала (R•) с молекулой происходит разрыв одной из валентных связей последней, и, таким образом, в результате реакции образуется новый свободный радикал, который, в свою очередь, реагирует с другой молекулой — происходит цепная реакция.

32)Коэффициент полезного действия тепловых машин.Второй закон термодинамики.

Коэффицие́нт поле́зного де́йствия (КПД) — характеристика эффективности системы (устройства, машины) в отношении преобразования или передачи энергии. Определяется отношением полезно использованной энергии к суммарному количеству энергии, полученному системой; обозначается обычно η (« эта»). η = Wпол/Wcyм. КПД является безразмерной величиной и часто измеряется в процентах. Математически определение КПД может быть записано в виде:

η = (A/Q)*100%, где А — полезная работа, а Q — затраченная работа.

Второй закон термодинамики исключает возможность создания вечного двигателя второго рода. Имеется несколько различных, но в то же время эквивалентных формулировок этого закона.

1 — Постулат Клаузиуса. Процесс, при котором не происходит других изменений, кроме передачи теплоты от горячего тела к холодному, является необратимым, то есть теплота не может перейти от холодного тела к горячему без каких-либо других изменений в системе. Это явление называют рассеиванием или диссипацией энергии.

Приведем второе начало термодинамики в аксиоматической формулировке Рудольфа Юлиуса Клаузиуса (1865): Для любой квазиравновесной термодинамической системы существует однозначная функция термодинамического состояния S = S(T,x,N), называемая энтропией, такая, что ее полный дифференциал dS = δQ / T.

2 — Постулат Кельвина. Процесс, при котором работа переходит в теплоту без каких-либо других изменений в системе, является необратимым, то есть невозможно превратить в работу всю теплоту, взятую от источника с однородной температурой, не проводя других изменений в системе.

33)Основные виды частиц,методы их регистрации.Систематика элементарных частиц.

Все элементарные частицы делятся на два класса:

бозоны — частицы с целым спином (например, фотон, глюон, мезоны).

фермионы — частицы с полуцелым спином (например, электрон, протон, нейтрон, нейтрино);

По видам взаимодействий элементарные частицы делятся на следующие группы:

-Составные частицы:

адроны — частицы, участвующие во всех видах фундаментальных взаимодействий. Они состоят из кварков и подразделяются, в свою очередь, на:

мезоны — адроны с целым спином, то есть являющиеся бозонами;

барионы — адроны с полуцелым спином, то есть фермионы. К ним, в частности, относятся частицы, составляющие ядро атома, — протон и нейтрон.

-Фундаментальные (бесструктурные) частицы:

лептоны — фермионы, которые имеют вид точечных частиц (т. е. не состоящих ни из чего) вплоть до масштабов порядка 10−18 м. Не участвуют в сильных взаимодействиях. Участие в электромагнитных взаимодействиях экспериментально наблюдалось только для заряженных лептонов (электроны, мюоны, тау-лептоны) и не наблюдалось для нейтрино. Известны 6 типов лептонов.

кварки — дробнозаряженные частицы, входящие в состав адронов. В свободном состоянии не наблюдались (для объяснения отсутствия таких наблюдений предложен механизм конфайнмента). Как и лептоны, делятся на 6 типов и считаются бесструктурными, однако, в отличие от лептонов, участвуют в сильном взаимодействии.

калибровочные бозоны — частицы, посредством обмена которыми осуществляются взаимодействия:

фотон — частица, переносящая электромагнитное взаимодействие;

восемь глюонов — частиц, переносящих сильное взаимодействие;

три промежуточных векторных бозона W+, W и Z0, переносящие слабое взаимодействие;

гравитон — гипотетическая частица, переносящая гравитационное взаимодействие. Существование гравитонов, хотя пока не доказано экспериментально в связи со слабостью гравитационного взаимодействия, считается вполне вероятным; однако гравитон не входит в Стандартную модель элементарных частиц.

Адроны и лептоны образуют вещество. Калибровочные бозоны — это кванты разных типов взаимодействий.Кроме того, в Стандартной модели с необходимостью присутствует хиггсовский бозон, который, впрочем, пока ещё не обнаружен экспериментально.

Метод толстослойных фотоэмульсий:

- служит для регистрации частиц

- позволяет регистрировать редкие явления из-за большого время экспозиции.

Фотоэмульсия содержит большое количество микрокристаллов бромида серебра. Влетающие частицы ионизируют поверхность фотоэмульсий. Кристаллики AgВr распадаются под действием заряженных частиц и при проявлении выявляется след от пролета частицы - трек.По длине и толщине трека можно определить энергию и массу частиц.

Элементарные частицы - первичные, неразложимые частицы, из которых, по предположению, состоит вся материя. Всего их более 350 (протоны, электроны, мюоны и др.). В зависимости от времени жизни частицы делятся на стабильные (электрон, протон, фотон и нейтрино), квазистабильные (распадающиеся при электромагнитном и слабом взаимодействиях) и резонансы (частицы, распадающиеся за счет сильного взаимодействия).

В соответствии с четырьмя видами фундаментальных взаимодействий различают соответственно четыре вида элементарных частиц: адроны (мезоны - пионы и каоны, и барионы - нуклоны и гипероны), участвующие во всех взаимодействиях, лептоны (электрон, мюон,электронное нейтрино, мюонное нейтрино), не участвующие только в сильном (а нейтрино и в электромагнитном), фотон, участвующий только только в электромагнитном взаимодействии, и гипотетический гравитон - переносчик гравитационного взаимодействия.