Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
микра шпоры!.docx
Скачиваний:
18
Добавлен:
03.08.2019
Размер:
246.57 Кб
Скачать

1. Микробиология – это наука, изучающая микроорганизмы (или, как их ещё называют, микробы – микроскопические объекты). Микроорганизмы – это такие биологические объекты, которые из-за своих малых размеров видны лишь в микроскоп.

Микробиология представляет собой целый комплекс биологических наук, которые можно классифицировать или по объекту изучения или по прикладным целям.

А. В зависимости от объекта изучения

1. Общая микробиология изучает общие закономерности структуры и функционирования микробной клетки.

2. Бактериология изучает прокариотические микроорганизмы – бактерии.

3. Микология изучает микроскопические грибки (эти микроорганизмы являются эукариотами).

4. Протозоология изучает простейшие (клетки которых, эукариотический тип строения).

5. Вирусология изучает микроорганизмы, представляющие собой неклеточную форму жизни – вирусы.

Б. По прикладным целям

1. Медицинская микробиология изучает микроорганизмы, имеющие медицинское значение.

2. Санитарная микробиология изучает микробиологические аспекты безопасности человека.

3. Ветеринарная микробиология изучает микроорганизмы, вызывающие патологические процессы у животных.

4. Промышленная микробиология занимается вопросами использования микроорганизмов как источников получения необходимых веществ в промышленных масштабах. На предприятиях микробиологической промышленности производят антибиотики, витамины, аминокислоты и другие биологически активные вещества. Кроме этого, специалисты промышленной микробиологии работают в пищевой, химической и других отраслях производства.

5. Почвенная микробиология изучает микроорганизмы, обитающие в почве. Эти микробы играют большую роль в жизни растений.

6. Морская микробиология изучает микроорганизмы мирового океана.

7. Космическая микробиология изучает взаимодействие человеческого организма с микробами в условиях космического полёта, а также занимается поисками микроорганизмов внеземного происхождения.

А. Таким образом, медицинская микробиология изучает, прежде всего, структуру и биологические свойства патогенных, условно-патогенных и синантропных микроорганизмов.

Б. Однако этим ни в коей мере не исчерпывается список задач, стоящих перед медицинской микробиологией. Исключительно большое значение играет изучение особенностей протекания того процесса, который называется инфекционным. Под этим термином понимают совокупность всех тех событий, которыми сопровождается сосуществования микроба и человеческого организма. Часто этот процесс обозначается термином «инфекция».

1. Медицинская микробиология изучает патогенез инфекций. Под этим термином понимают те особенности взаимоотношений микроба и макроорганизма, которые приводят к развитию в человеческом организме патологического процесса.

2. Задачей медицинской микробиологии является также разработка специфических методов диагностики микробных заболеваний.

3. Медицинская микробиология разрабатывается также методы лечения микробных заболеваний. Причем приоритет отдаётся тем препаратам, которые действуют на причину (этиологию) данного микробного заболевания, то есть на сам микроорганизм. Такая терапия называется этиотропной.

4. И, наконец, медицинская микробиология занимается разработкой методов профилактики микробных заболеваний. Особое внимание при этом уделяется опять же тем методам, которые направлены не на профилактику определённой группы схожих инфекций, а на предупреждения конкретного заболевания. Такая профилактика называется специфической.

А. Микроскопический метод диагностики основан на микроскопии мазка, приготовленного из патологического материала с целью обнаружения в нём микроорганизмов. Под патологическим материалом понимают любой материал (кровь, моча, кал, раневое отделяемое, пункта, образец объекта внешней среды и т.д.), в котором может находиться возбудитель микробного патологического процесса или другой микроорганизма, представляющий интерес для медицинской микробиологии. В зависимости от объекта исследования, данный метод носит так же названия бактериоскопический, микоскопический, вирусоскопический.

Б. Культуральный метод диагностики основан на выделении из патологического материала чистой культуры микроорганизма (т.е. такой культуры, которая содержит особи только одного вида) и дальнейшей её идентификации.

В. Экспериментальный (или биологический) метод диагностики основан на введении патологического материала в организм лабораторного животного и дальнейшей регистрации изменений его состояния: если в патологическом материале присутствовал патогенный микроб, то лабораторное животное заболевает или даже погибает. При этом учитываются специфические клинические симптомы, проявляющиеся во время болезни животного, а также специфические изменения внутренних органов, выявляемые при вскрытии его трупа. Из органов животного можно приготовить мазки или выделить чистую культуру. В этом случае этот метод диагностики сочетается с микроскопическим и, при нужде, с культуральным.

Г. Иммунологический (или иммунобиологический) метод диагностики на самом деле представляет собой совокупность методов, общим для которых служит использование в диагностических целях иммунологических реакций. Более детально эти методы рассматриваются в курсе иммунологии.

1. Наиболее широко при иммунологическом методе диагностики используются серологические реакции – так называются реакции между антигеном и антителом, проводимые in vitro.

а. С помощью серологических реакций можно выявлять антигены микробов. В этом случае смешивают взвесь исследуемых микроорганизмов и специальные диагностические сыворотки, содержащие известные антитела.

1. При этом микробные антигены можно выявлять непосредственно в патологическом материале, без предварительного выделения из него чистой культуры. Такой метод позволяет сделать вывод о наличии, например, в организме больного возбудителя инфекционного заболевания в считанные часы. Поэтому он носит название экспресс-диагностика.

2. Микробные антигены идентифицируют так же в чистой культуре микроорганизма, предварительно выделенной из патологического материала. В этом случае говорят о серологической идентификации выделенной культуры. Такую идентификацию осуществляют на последнем этапе культурального метода исследования.

б. Серологические реакции можно так же использовать для выявления антител против микробных антигенов. В этом случае смешивают диагностикум (взвесь известного антигена) и сыворотку крови больного. Такой способ диагностики микробных заболеваний называется серодиагностика.

2. Кожно-аллергические пробы используются для выявления специфической гиперчувствительности (аллергии) к аллергенам, в том числе микробным. Из взвесь вводят больному внутри- или накожно.

3. В настоящее время в диагностике всё шире применяются методы оценки иммунного статуса, позволяющие выявить нарушения иммунологического реагирования организма человека, в том числе на микробные, антигены.

2.История развития микробиологии

Истории микробиологии выделяют четыре периода.

А. Первый период называется описательный.

1. Он длился с конца XVII до середины ХХ в.

2. В этот период произошло открытие мира микроорганизмов и описание внешнего вида большинства бактерий.

3. Ключевой фигурой этого периода является изобретатель микроскопа и первый человек, увидевший удивительный и таинственный мир микроорганизмов – Левенгук

Б. Второй период развития микробиологии носит название физиологический (или, как его ещё называют по имени, пожалуй, самого выдающегося микробиолога всех времён и народов – пастеровский).

1. Второй период охватывает время с середины XIX до начала ХХ в.

2. Этот период развития микробиологии характеризуется началом изучения жизнедеятельности (физиологии) бактериальной клетки, открытием болезнетворных бактерий, началом научной микробиологии.

3. Развитие микробиологии в этот период практически полностью определяли два великих учёных, ставших основоположниками научной микробиологии – Пастер (Рис. 1-2) и Кох (Рис. 1-3). Их заслуги настолько значительны, что будет справедливым рассмотреть их чуть ниже, выделив в самостоятельный раздел. 1.6. Основоположники научной микробиологии Пастер и Кох

Пастер и Кох – два величайших учёных, подобно двум атлантам, держат на своих плечах всё грандиозное здание современной научной микробиологии. Именно они – и прежде всего Пастер – превратили интересное времяпрепровождение, которым было до середины ХІХ века рассматривание в «трубу Левенгука» забавных микроскопических существ, в настоящую науку, буквально перевернувшую всю систему взглядов на саму сущность жизни.

А. Пастер был по своему образованию химиком, в микробиологию его привела логика научного поиска. Как химик, он занялся изучением брожения – как тогда полагали, химического процесса – и открыл его биологическую сущность: брожение, как оказалось, осуществляли микроорганизмы. Пастер занялся дальнейшим изучением живых микроскопических объектов, создав новую науку – микробиологию и превратившись в этой новой науке в непререкаемого авторитета.

1. Пастер доказал патогенность для человека стафилококка, пневмококка. В медицинской микробиологии принято считать первооткрывателем микроба не того, кто первым описал его, а того, кто доказал его роль как этиологического агента того или иного заболевания. Поэтому Пастера считают первооткрывателем этих бактерий. Кроме них Пастер открыл клостридии.

2. Пастер первым разработал алгоритм приготовления живых (ослабленных) вакцин, назвав эти препараты в честь эмпирического открытия Дженнера, разработавшего оспопрививание (лат. vacca = корова). Пастер приготовил вакцины протии куриной холеры, сибирской язвы и бешенства. Последнюю вакцину он создал, даже не зная возбудителя болезни (вирусы были открыты позднее). Таким образом, Пастера смело можно назвать основоположником иммунологии.

3. Пастеру принадлежит и множество других открытий.

а. Как уже упоминалось выше, Пастер открыл микробную природу брожения.

б. Кроме этого им была открыта микробная же природа болезней шелковичных червей, а так же природа порчи (скисания) вина и пива. Эти открытия великого учёного принесли Франции огромную материальную выгоду.

в. Пастер доказал невозможность самозарождения микроорганизмов.

г. Пастер изобрёл такие широко ныне применяемые способы стерилизации, как стерилизация сухим жаром и пастеризация.

Б. Кох, в отличие от Пастера, был врачом. После окончания университета он работал в глухом уголке Восточной Пруссии. Чтобы развеять скуку мужа, жена подарила ему на день рождения микроскоп, который рассматривался в то время как полуигрушка. Так получилось, что этот подарок положил начало научной карьере Коха, будущего лауреата Нобелевской премии за открытие возбудителя самого страшного в то время заболевания – туберкулёза.

1. Кох открыл возбудителей сибирской язвы, холеры («запятая Коха») и туберкулёза («палочка Коха»).

2. Кох усовершенствовал правила, предложенные Генле, для доказательства этиологической роли данного микроба в развитии данного заболевания. Триада Генле-Коха гласит: чтобы данный микроб считался возбудителем данного заболевания необходимо:

  • выделить данный микроб от больного (при этом от здорового он выделять не должен),

  • получить чистую культуру данного микроба,

  • при заражении ею лабораторного животного, у последнего должно развиться заболевание со схожей клинической картиной.

В настоящее время все три положения триады Генле-Коха уже устарели, но в своё время (конец ХІХ – начало ХХ в.) это были чёткие правила, следуя которым, микробиологи один за другим открывали возбудителей инфекционных заболеваний. Это было время информационного взрыва в микробиологии.

3. Кох очень много сделал в области практической бактериологии.

а. Им были введены в бактериологическую практику плотные питательные среды.

б. Кох предложил окрашивать микроорганизмы анилиновыми красителями.

в. Кох оснастил микроскоп иммерсионным объективом, положив начало использованию иммерсионной микроскопии, самого распространённого метода микроскопии в бактериологических лабораториях.

г. Кох первым стал применять микрофотографию.

д. Кох разработал метод стерилизации текущим паром. Прибор, применяемый для этой цели до сих пор, называется «аппаратом Коха».

3.В. Третий период развития микробиологии называется иммунологический.

1. Он продолжался с начала до середины ХХ века.

2. Как следует из названия, третий период развития микробиологии характеризуется прежде всего открытием иммунитета и началом развития иммунологии.

3. Из наиболее заслуженных учёных, работавших в этот период, необходимо упомянуть Мечникова, Эрлиха, Флеминга, Домагка и Ивановского.

а. Мечников (Рис. 1-4) разработал клеточную теорию иммунитета.

б. Эрлих (Рис. 1-5) разработал гуморальную теорию иммунитета, он же является основоположником химиотерапии инфекционных заболеваний.

в. Флеминг (Рис. 1-6) открыл пенициллин.

г. Домагк положил начало применению сульфаниламидов в медицинской практике.

д. Ивановский (рис. 1-7) открыл вирусы.

4.Г. Последний период развития микробиологии называется, что понятно, современным.

1. Начался он с середины ХХ в.

2. Характеризуется современный период развития микробиологии разработкой молекулярных методов исследования.

3. Из учёных этого периода необходимо упомянуть Львова, Портера, Эдельмана, Бернета, Галло, Монтанье, Пруссинера.

а. Львов (Рис. 1-8) открыл способность вирусов сохраняться в виде интегрированных в хромосому клетки-хозяина нуклеотидных последовательностей, которые были названы провирусом. Это открытие революционным образом изменило представление о молекулярных механизмах взаимодействия вируса с инфицированной клеткой.

б. Работы Портера и Эдельмана позволили понять строение иммуноглобулинов (антител).

в. Бернет (Рис. 1-9) сформулировал клонально-селекционную теорию иммунитета, лежащую в основе современных взглядов на функционирование иммунной системы.

г. Галло и Монтанье открыли вирус иммунодефицита человека (ВИЧ) – самый страшный из инфекционных агентов, с которыми когда-либо сталкивалось человечество. В настоящее время пандемия ВИЧ-инфекции не контролируется всемирным здравоохранением и несёт реальную угрозу существования вида Homo sapiens.

д. Прусинер (Рис. 1-10) открыл прионы – инфекционные белки, по всей видимости, не содержащие нуклеиновых кислот. Прионовые инфекции – губчатые энцефалопатии – абсолютно смертельные заболевания, не поддающиеся лечению.

5. Развитие микробиологии в Беларуси

На территории Беларуси и научные учреждения, в которых развивалась микробиологическая наука и учебные заведения, где микробиология преподавалась как предмет, возникли в первой трети ХХ века, но впервые микроскоп как научный прибор применили здесь в конце XVIII века.

А. В конце XVIII века в Гродно Жилибером (Рис. 1-11) была основана медицинская академия. В одной из своих статей Жилибер описывает свою попытку в отделяемом язвы найти в микроскоп мельчайших животных, которые могли бы быть причиной заболевания. По описанию клинических симптомов можно сделать предположение, что у больного была сибирская язва – Жилибер вполне мог увидеть в микроскоп возбудителя. И хотя сибиреязвенная бацилла была открыта значительно позже, именно попытку Жилибера можно назвать первым в истории Беларуси случаем использования микроскопа в диагностике инфекционной болезни.

Б. Становление микробиологической науки в Беларуси связано с именем Эльберта (Рис. 1-12). Эльберт, чья научная деятельность продолжалась с 20-х по 60-е годы ХХ в., основал в Минске санитарно-бактериологический институт и первую кафедру микробиологии. Эльберт много сделал для изучения клебсиелл, он является соавтором создания вакцины для профилактики туляремии (вакцина Гайского-Эльберта).

В. Его ученик и соратник Гельберг (Рис. 1-13) основал кафедру микробиологии в Гродненском медицинском институте. Гельберг, чья научная деятельность протекала с 20-х по 90-е гг. ХХ в., заслужил мировое признание своими работами по изучению микобактерий. Кафедра микробиологии, вирусологии и иммунологии Гродненского государственного медицинского университета носит имя С.И.Гельберга.

Г. Красильников (Рис. 1-14), время деятельности которого выпадает на 40-е – 90-е гг. ХХ в. является ведущим белорусским бактериологом конца ХХ века, его работы по изучению клебсиелл, лептоспир, не потеряли своего значения и по сей день. Именно Красильников, по желанию Эльберта, принял из его рук кафедру микробиологии Минского медицинского института и возглавлял её не одно десятилетие. Как в своё время Эльберт, так и Красильников, передал заведование кафедрой своему самому достойному ученику – Титову (рис. 1-15), ведущему белорусскому иммунологу, который сейчас, являясь членом Национальной академии наук Беларуси, возглавляет не только кафедру микробиологии Белорусского медицинского университета, но и Научно-исследовательский институт эпидемиологии и микробиологии – центральное научное учреждение в области медицинской микробиологии нашей страны.

Д. Основоположником белорусской вирусологии является Вотяков (Рис. 1-16), работающий в Беларуси с 1950 г. Он внес значительный вклад в решение многих проблем общей и прикладной вирусологии и эпидемиологии, в выяснение механизмов развития вирусных инфекций, их лечение химиопрепаратами. За 50 с лишним лет своей работы Вотяков создал белорусскую школу вирусологов.

6. Типы таксономии биологических объектов

Существует два основных типа таксономии (т.е. систематики или классификации) биологических объектов – филогенетический и практический. В последние годы в систематику микроорганизмов пришли молекулярные генетики и своими исследованиями смешали два этих принципа. Как результат, современная классификация микробов стала, несомненно, более научной, но, к сожалению, более путанной. Кроме этого, она менее удобна для применения в практической работе – даже в научных журналах многие авторы продолжают пользоваться устаревшей классификацией или совмещать обе системы; тем более, что более новые системы таксономии еще не устоялись и меняются с калейдоскопической быстротой. Ниже будут, как правило, приводится традиционные варианты таксономии микроорганизмов, любители «передового рубежа науки» могут почерпнуть нужную информацию в научной периодике и монографической литературе.

А. Филогенетическая систематика биологических объектов называется также естественной систематикой.

1. При этом типе таксономии биологических объектов в один таксон (группу классификации) объединяются объекты, имеющие общий корень происхождения. Т.е. общий принцип такой классификации можно сформулировать как «кто от кого произошёл».

2. Филогенетическая (естественная) систематика является основным типом таксономии, применяемой в общей биологии.

Б. Практическая систематика биологических объектов называется также искусственной систематикой.

1. При этом в один таксон объединяются биологические объекты, схожие по своим признакам. Общий принцип такой классификации можно сформулировать как «кто на кого похож».

2. Практическая (искусственная) систематика является основным типом таксономии, применяемой в микробиологии.

2.2. Признаки, лежащие в основе современной таксономии микроорганизмов

Микроорганизмы классифицируются на основе морфологических, биохимических, физиологических (культуральных), серологических и молекулярно-биологических признаков.

А. Морфологические признаки выявляются с помощью микроскопического метода исследования. Можно сказать, что описывая морфологию микроорганизмов, описывают все те признаки, которые видны в микроскоп.

1. Морфологические признаки включают в себя форму, размер и строение бактериальной клетки или вирусной частицы.

2. Морфологические признаки используются и в классификации бактерий и в классификации вирусов.

Б. Биохимические признаки микроорганизмов изучаются в ходе культурального метода исследования.

1. Под биохимическими признаками понимают биохимическую активность бактерий (так как вирусы не имеют собственного метаболизма, то об их биохимической активности говорить не приходится). Т.е. какие субстраты разлагает бактериальная клетка и какие продукты её метаболизма при этом образуются.

2. Биохимические признаки используются в классификации бактерий, но не вирусов.

В. Культуральные (или физиологические) признаки так же изучаются в ходе культурального метода исследования.

1. Под культуральными признаками понимают характер роста микроорганизмов на искусственных питательных средах.

2. Культуральные признаки так же используются лишь в классификации бактерий, но не вирусов, так как последние не растут (как облигатные паразиты) на искусственных питательных средах.

Г. Серологические признаки изучаются с помощью иммунологического метода исследования (а именно, с помощью серологических реакций). Эта группа признаков микробов изучается в курсе иммунологии.

1. Под серологическими признаками микроорганизма понимают его антигенный состав.

2. Серологические признаки используются в классификации как бактерий, так и вирусов.

Д. Молекулярно-биологические признаки микроорганизмов выявляются при генетическом исследовании.

1. К молекулярно-биологическим признакам относят особенности строения нуклеиновых кислот микроорганизмов.

а. С помощью специальных методов, о которых речь пойдёт ниже, в разделе, рассказывающем о генетике бактерий, изучают строение ДНК.

б. Используют в таксономии микроорганизмов и особенности строения их РНК.

1. Структура иРНК используется для классификации РНК-геномных вирусов.

2. У бактерий с таксономической целью используют особенности 16S рРНК. рРНК находится вне сферы действия отбора, и эволюционируют только в ходе спонтанных мутаций, скорость которых постоянна. Поэтому количество нуклеотидных замен в молекулах сравниваемых рРНК может служить мерой эволюционного расстояния между организмами.

2. Включение молекулярно-биологических признаков в систематику сближает оба типа таксономии, так как сходство на уровне нуклеиновых кислот отражает не только простое сходство признаков, но и эволюционную близость сравниваемых микроорганизмов. Молекулярно-биологические признаки использую (с вышеуказанными особенностями) в классификации как бактерий, так и вирусов.

2.3. Иерархическая система таксонов, применяемых в бактериологии и вирусологии

Из-за принципиального отличия в строении и функционировании прокариот (бактерий) и вирусов, система таксонов, применяемых в их классификации, так же различна.

А. У бактерий таксоны располагаются в следующем нисходящем порядке: царство, отдел, порядок, семейство, род, вид, подвидовые категории.

1. Царство – самый крупный таксон, все бактерии объединены в царство Procaryota, названное так вследствие особенности строения бактериальной клетки. Среди эукариот также есть микроорганизмы – это микроскопические грибки и простейшие.

2. По особенностям строения клеточной стенки прокариоты классифицируются на четыре отдела, три из которых (Firmicutes, Gracilicutes и Tenericutes) объединяют эу(истинные)бактерии, а один (Mendosicutes) – так называемые архебактерии (малоизученные прокариоты, обитающие в экстремальных условиях). Медицинская микробиология не изучает архебактерии, поскольку они не имеют медицинского значения.

3. Название порядка у бактерий всегда заканчивается на ales. На порядки классифицируется большинство прокариот.

4. Название семейства у прокариот заканчивается на –ceae. Практически все прокариоты классифицированы на семейства.

5. Семейства подразделяются на роды. Из их числа лишь немногие, так называемые роды с неясным таксономическим положением, не классифицированы как относящиеся к тому или иному семейству.

6. Роды подразделяются на виды. Вид является основной таксономической единицей у всех форм клеточной жизни (т.е. не только у про-, но и у эукариот).

7. Вследствие выраженной способности к изменчивости, виды бактерий отличаются крайней степенью гетерогенности. Поэтому в систематике прокариот используются так называемые подвидовые категории: вариант, штамм, клон.

а. Особи одного вида, отличающиеся друг от друга каким-либо признаком, классифицируются как различные варианты («-вары») этого вида. Раньше эти таксономические единицы назывались «-типами» и этот термин до сих пор встречается в научной литературе.

1. Морфовары отличаются друг от друга своими морфологическими признаками.

2. Биовары – биологическими признаками (например, культуральными).

3. Ферментовары отличаются друг от друга набором ферментов и, как следствие, биохимической активностью. Часто для их обозначения также используется термин «биовар».

4. Резистенсвары отличаются устойчивостью к антимикробным веществам, прежде всего к антибиотикам.

5. Фаговары отличаются чувствительностью к типовым фагам (вирусам бактерий),

6. Серовары отличаются друг от друга своим антигенным составом.

7. Эковары различны по среде своего обитания, т.е. тем экологическим нишам, которые занимают эти варианты.

8. Патовары отличаются друг от друга уровнем своей болезнетворности (патогенностью, вирулентностью)

б. Термин штамм используется для обозначения бактериальной культуры, выделенной из конкретного источника. Например, две культуры кишечной палочки, выделенные из кишечника разных людей, могут быть абсолютно идентичны друг другу по всем своим свойствам, однако, тем не менее, они будут считаться двумя различными штаммами.

в. Потомство одной бактериальной клетки называется клоном. В генетике этот термин используется для обозначения двух особей, идентичных по своему геному. В практической бактериологии клональной называется культура, выросшая из одной клетки, хотя уже после 5 – 7 делений, вследствие выраженной изменчивости, бактериальные клетки теряют генетическую идентичность.

Б. У вирусов таксоны располагаются в следующем нисходящем порядке: царство, подцарство, семейство, подсемейство, род, название вируса, варианты вируса.

1. Вирусы, как неклеточная форма жизни выделяются в отдельное царство Vira.

2. В зависимости от типа нуклеиновой кислоты, а вирусная частица, в отличие от клетки содержит или ДНК или РНК, царство Vira подразделяется на два подцарства – ДНК- и РНК-геномных вирусов.

3. Подцарства содержат семейства. Это наиболее часто употребляемое название вирусных таксонов. Когда говорят «герпесвирус» или «аденовирус» имеют в виду именно семейство. Название семейства в латинском написании обязательно имеет окончание –viridae.

4. Некоторые семейства подразделяются на подсемейства. Название этого таксона заканчивается на –virinae.

5. Основной таксономической единицей в систематике вирусов является род (понятие «вид» в вирусологии не определено).

6. В роды входят отдельные вирусы. Например, в род Orthoparamyxovirus входят вирусы парагриппа, эпидемического паротита, ньюкаслской болезни.

7. Вирусы так же, как и бактерии, классифицируются на различные варианты. Чаще всего речь идёт об антигенных вариантах – в этом случае, как и у бактерий, употребляется термин «серовар» или «серотип».

7. Методы микроскопии

Для изучения морфологии микроорганизмов необходим микроскоп. В микробиологии используют два вида микроскопии – электронную и световую.

А. Электронная микроскопия используется специализированными лабораториями.

1. Для ее осуществления необходим электронный микроскоп

2. Принцип его действия заключается в том, что вместо световой волны используется пучок электронов, что позволяет увеличить чувствительность метода на несколько порядков.

3. Электронная микроскопия используется для обнаружения и изучения вирусов, а также для изучения ультраструктуры бактериальной клетки.

Б. Световая микроскопия может использоваться и обычными лабораториями.

1. Обычная световая микроскопия используется в микробиологической практике сравнительно редко. В обиходе микробиологов этот метод часто называется «сухим», в противоположность иммерсионному методу микроскопии.

а. Для этого вида микроскопии используется обычный биологический микроскоп (Рис. 6-2).

б. Принцип действия этого микроскопа рассматривается в курсе физики.

в. «Сухой» объектив может использоваться, например, для микроскопирования препарата «придавленная капля» при определении подвижности бактерий.

2. При иммерсионной микроскопии используется специальное иммерсионное масло.

а. В качестве иммерсионного микроскопа служит обычный биологический микроскоп, но оснащенный специальным объективом (маркированным черной полосой).

б. Принцип метода заключается в том, что иммерсионное масло, обладая коэффициентом преломления чрезвычайно близким к коэффициенту преломления стекла, делает потерю световых лучей на границе сред стекло предметного стекла/масло и масло/стекло объектива минимальной, что улучшает качество микроскопической картины и увеличивает разрешающую способность микроскопа.

в. Именно иммерсионная микроскопия используется в бактериологии наиболее часто.

3. Более редко в бактериологии используется темнопольная микроскопия.

а. С этой целью обычный биологический микроскоп оснащается специальным темнопольным конденсором.

б. Принцип его действия заключается в том, что все прямые лучи минуют объектив, куда попадают лишь те из них, которые преломились на объекте микроскопирования. Поэтому микроорганизмы видны как светящиеся объекты на темном фоне.

в. Темнопольная микроскопия наиболее часто используется для обнаружения спирохет, так как позволяет визуализировать очень тонкие объекты.

4. В ряде случаев в бактериологических лабораториях используется фазово-контрастная микроскопия.

а. Для этого обычный биологический микроскоп оснащается специальной приставкой с особым набором линз (Рис. 6-3).

б. Принцип её действия заключается в том, что смещение фазы световой волны, происходящее при её прохождении через прозрачные для нашего глаза объекты и не воспринимаемое человеческим глазом (собственно именно поэтому такие объекты и выглядят прозрачными), преобразовывается в изменение амплитуды световой волны. А изменение этого параметра воспринимается нашим глазом – объект становится видимым.

в. Фазово-контрастная микроскопия используется, как правило, для обнаружения очень тонких (например, спирохеты, жгутики бактериальной клетки) или высоко прозрачных (например, микоплазмы) объектов.

5. И бактериологические и иммунологические и вирусологические лаборатории не могут считаться современными без возможности использования люминесцентной микроскопии.

а. Для этой цели служит особый люминесцентный микроскоп

б. Принцип её действия заключается в том, что используемые при обработке мазка для этого вида микроскопии особые, люминесцентные, красители вызывают свечение микроскопируемого объекта под воздействием коротковолнового (чаще всего – синего) света, которым он освещается (явление наведённой люминесценции).

в. Люминесцентная микроскопия широко используется в современной микробиологии.

1. Для выявления в мазке некоторых видов бактерий используются специальные флюоресцентные красители, обуславливающие специфическое свечение изучаемых микроорганизмов.

а. Для выявления возбудителя сибирской язвы используется родамин.

б. Красное свечение зёрнам волютина, наличие которых позволяет идентифицировать коринебактерии, обуславливает корефосфин.

в. Аурамин используется для выявления микобактерий туберкулёза, которые, при обработке мазка этим флюорохромом и микрокопировании его в люминесцентном микроскопе, выглядят как жёлтые палочки на зелёном фоне.

2. Люминесцентная микроскопия используется также для оценки реакции иммунофлюоресценции. Если антитела диагностической сыворотки адсорбируются на поверхности клетки, содержащий выявляемый антиген, то в люминесцентном микроскопе такая клетка будет окружена жёлто-зелёным ободком, так как антитела флюоресцирующей сыворотки метятся специальным флюорохромом – флюоресцеинизотиоционатом натрия (ФИТЦ).

8 Методы окраски мазков

В основном для окраски микроорганизмов используются анилиновые красители. В зависимости от их количества и, соответственно, цели исследования все методы окраски подразделяются на две группы.

А. При простых методах окраски используется лишь одна краска.

1. С этой целью в бактериологии используются, как правило, или водный фуксин или метиленовая синька.

2. Простые методы окраски используются для ориентировочной, предварительной, микроскопии – наличия в патологическом материале бактерий, определение их формы и расположения в мазке.

Б. При сложных методах окраски используются ряд красок в определенной последовательности. Такие методы используются для выявления в патологическом материале определённых микроорганизмов, а также особенностей их ультраструктуры.

1. Окраска по Граму используется для определения типа строения клеточной стенки. Это основной метод в бактериологии. В зависимости от окраски по Грамму все бактерии подразделяются на грамположительные и грамотрицательные.

2. Окраска по Цилю-Нильсену используется для выявления кислотоустойчивых бактерий (а именно – микобактерий), а также для обнаружения спор.

3. Окраска по Нейссеру используется для выявления цитоплазматических включений волютина и идентификации по их наличию коринебактерий (в частности – возбудителей дифтерии).

4. Окраска по Бури-Гинсу используется для выявления макрокапсул.

5. Окраска по Морозову используется для выявления жгутиков. Этот метод окраски используется также для выявления трепонем. Кроме того, окраску по Морозову используют в вирусологии – для выявления в оспенных пузырьках вирусов натуральной и ветряной оспы.

6. Окраска по Здрадовскому используется для выявления риккетсий и хламидий.

7. Окраска по Романовскому-Гимзе также, наряду с окраской по Здрадовскому, используется для выявления риккетсий и хламидий; кроме того, этот метод окраски используется для выявления спирохет (с их идентификацией до рода в зависимости от цвета окрашивания), а также для выявления простейших.

3.1. Морфологические признаки бактерий

При описании морфологии бактерий определённого таксона характеризуют следующие присущие ему признаки:

  • окраска по Граму,

  • форма бактериальной клетки,

  • размер бактериальной клетки,

  • наличие защитных приспособлений (капсулы, эндоспоры),

  • подвижность (наличие жгутиков, их число и расположение),

  • расположение бактерий в мазке.

А. Подавляющие большинство прокариот, благодаря наличию жёсткой структуры - клеточной стенки – обладают определённой формой, которая хоть и может варьировать в определённых пределах, тем не менее, является достаточно стабильным морфологическим признаком. Такие бактерии относятся к отделам Firmicutes и Gracilicutes.

1. Бактерии, имеющие круглые клетки, называются кокками.

а. Форму математически идеального шара, имеют стафилококки (Рис. 3-1).

б. Овальную форму клеток имеют стрептококки (Рис. 3-2).

в. Ланцетовидную форму или, как её ещё описывают, форму горящей свечи, имеют пневмококки (Рис. 3-3).

г. Бобовидную форму имеют нейссерии (гонококки и менингококки) (Рис. 3-4).

2. Бактерии цилиндрической формы называют палочковидными или просто палочками.

а. Большинство палочек прямые

б. Некоторые палочки имеют изогнутую форму. Раньше такие бактерии относились к спирохетам, но последние имеют ряд принципиальных особенностей своей ультраструктуры, которые не присущи изогнутым палочкам.

1. Один изгиб имеют вибрионы (Рис. 3-6). Их ещё сравнивают с запятыми, а холерный вибрион, мо имени первооткрывателя, называют «запятой Коха».

2. Кампилобактеры (Рис.3-7) и геликобактеры (Рис. 3-8) имеют два-три изгиба. Из-за такой формы и ещё принимая во внимание их расположение в мазке, эти бактерии характеризуют как «крыло чайки»

в. Отдельную группу составляют ветвящиеся и способные к ветвлению бактерии. Типичным представителем их являются актиномицеты (Рис. 3-9). Способны к ветвлению микобактерии и коринебактерии. Эта группа называется также бактерии актиномицетного ряда.

3. Извитые формы бактерий обладают особенностями ультраструктуры, придающими им вид кручёной нити. Более подробно о них будет сказано ниже. К этой группе относятся спирохеты – трепонемы, лептоспиры, боррелии

Б. Особая группа бактерий не имеет определённой формы. Речь идёт о микоплазмах (Рис. 3-11). Эти бактерии лишены клеточной стенки, а именно она играет у прокариот формообразующую роль. Микоплазмы выделены в особый отдел – Tenericutes.

3.3. Размер бактерий

Размер бактериальных клеток можно измерить с помощью специальной линейки, помещаемой в окуляр микроскопа. Однако на начальном этапе изучения мира микроорганизмов достаточно обладать ориентировочными представлениями о размере микробов.

А. Кокки имеют размер порядка 1 мкм.

Б. Палочки по их размеру можно разделить на три основные группы.

1. Наиболее мелкие палочки по своим размерам схожи с кокками. Такие палочки называются коккобактериями.

2. Размер подавляющего большинства палочек можно охарактеризовать как мелкие и средние. Из-за присущего прокариотам полиморфизма провести чёткую границу между палочками мелких и средних размеров достаточно сложно.

3. И, наконец, к крупным палочкам относятся ветвящиеся (бактерии актиномицетного ряда) и спорообразующие (бациллы и клостридии) палочки.

В. Спирохеты, по признаку их размера, можно охарактеризовать как очень тонкие и очень длинные.

Г. Микоплазмы, причине, о которой уже говорилось выше, не имеют строго определённого размера, который колеблется у этих прокариот от сотен нанометров (т.е. соизмерим с размером больших вирусов) до десятков микрометров (т.е. достигает размера крупных бактерий).

3.4. Расположение бактерий в мазке

Для правильной оценки этого признака очень важную роль играют правильное приготовление мазка и практический опыт микробиолога (впрочем, первое почти всегда зависит от второго). Расположение бактерий в мазке зависит от особенностей их деления – в каком количестве плоскостей одновременно происходит этот процесс и сразу ли новообразованные клетки расходятся после деления.

А. Наибольшую разнообразность по этому признаку демонстрируют кокки.

1. Микрококки (монококки) располагаются в мазке беспорядочно (поодиночке).

2. Диплококки располагаются попарно. К диплококкам относятся пневмококки и нейссерии (гонококки и менингококки). Кроме этого, попарное расположение характерно и для энтерококка.

3. Сарцины располагаются в мазке в виде пакетов, число кокков в которых кратно четырём (Рис. 3-12).

4. Стрептококки располагаются цепочками (Рис. 3-13).

5. Стафилококки формируют в мазке беспорядочные группы, сравниваемые обычно с гроздьями винограда.

Б. У палочек гораздо меньше вариантов по этому признаку.

1. Подавляющее большинство из них располагаются в мазке беспорядочно.

2. Клебсиеллы и коринебактерии (а именно – возбудитель дифтерии) располагаются в мазке преимущественно попарно и поэтому называются диплобактериями. При этом для клебсиелл типично расположение в парах друг за другом, а для возбудителя дифтерии – под углом.

3. Бациллы (Рис. 3-14) располагаются в мазке цепочкой (стрептобациллы).

4.1. Различия эу- и прокариотической клетки

Прокариотическая клетка имеет, по сравнению с клеткой эукариотической, принципиально иной тип организации. Ниже приводятся те основные признаки, по которым бактериальная клетка отличается от эукариотической (в качестве примера последней взята животная клетка).

А. Принципиальное отличие её ультраструктуры – отсутствие внутриклеточных мембранных структур. Бактериальная клетка имеет лишь одну мембрану – цтоплазматическую. Внутреннее же пространство прокариотической клетки, в отличие от клетки эукариотической, не разделяется внутриклеточными мембранными структурами на отдельные, изолированные друг от друга, отсеки (Рис. 4-1).

Б. У всех форм клеточной жизни (в отличие от вирусов) наследственная информация хранится в ДНК, однако у прокариотической клетки молекула ДНК организована несколько по иному, в сравнении с эукариотической клеткой.

1. ДНК бактериальной клетки имеет не линейную, а циркулярную форму.

2. Локализуется ДНК прокариотической клетки в нуклеоиде и плазмидах (у эукариот ДНК локализуется в ядре и митохондриях).

3. ДНК нуклеоида представляет, условно говоря, единственную хромосому бактериальной клетки, в то время как у эукариотической клетки имеется целый набор хромосом.

4. У бактерий отсутствуют гистонные белки.

5. У прокариот отсутствует также процесс митоза.

В. Рибосомы прокариотической клетки имеют меньшую молекулярную массу (70S, а не 80S, как у животной клетки).

Г. Цитоплазма прокариот ничем не отличается от подобной структуры у эукариот, разве что у бактериальной клетки отсутствует её движение.

Д. Подавляющее число бактериальных клеток содержит уникальное вещество – пептидогликан, составляющий основу прокариотической клеточной стенки. Пептидогликан представляет собой жёсткую структуру, состоящую из полимерных цепей аминосахаров, связанных между собой пептидными мостиками (Рис. 4-2 – 4-4).

Е. Бактерии имеют иное, чем эукариоты, строение жгутика. Он у них представляет собой спирально скрученные субъединицы сократительного белка флагеллина.

4.2. Органеллы бактериальной клетки

Бактериальная клетка содержит набор органелл, которые условно можно разделить на две группы – обязательные и необязательные.

А. Наличие обязательных органелл является непременным условиям успешного функционирования бактериальной клетки.

1. Нуклеоид представляет собой циркулярно-замкнутую двухцепочечную суперспирализованную молекулу ДНК. Для его обозначения используется еще термин «бактериальная хромосома».

2. Цитоплазма бактериальной клетки по своей структуре аналогична цитоплазме эукариотической клетки.

3. Рибосомы у бактерий также аналогичны рибосомам эукариот, но имеют меньшую молекулярную массу.

4. Цитоплазматическая мембрана (ЦПМ) бактерий представляет собой такую же биологическую мембрану, которая окружает цитоплазму эукариотической клетки, но не содержит стеринов. Стерины входят в состав ЦПМ лишь у микоплазм.

5. ЦПМ бактериальной клетки формирует впячивания – мезосомы, – которые являются центром энергетического метаболизма клетки, а также принимают участие в процессе клеточного деления.

6. Клеточная стенка отсутствует только у микоплазм и у, так называемых дефектных форм бактерий, о которых будет сказано ниже. Играет формообразующую роль и предохраняет бактериальную клетку от осмотического лизиса. Клеточная стенка у бактерий имеет два типа строения. Так эта органелла – одна из важнейших у прокариот, её строение будет рассмотрено далее в особом разделе.

Б. Отсутствие необязательных органелл серьёзно не сказывается на функциональных потенциях клетки, могут присутствовать не у всех особей данного вида. Различные морфовары отличаются друг от друга преимущественно набором именно этих органелл.

1. Плазмиды представляют собой такую же по строению молекулу ДНК, как и нуклеоид, но в отличие от последнего обладают значительно меньше молекулярной массой и могут быть представлены в покоящейся клетке несколькими копиями. Насчитывается несколько десятков видов бактериальных плазмид. Многие из них могут сосуществовать в одной бактериальной клетке.

2. Бактериальная клетка может содержать цитоплазматические включения, которые чаще всего содержат запасы питательных веществ. Некоторые из них настолько характерны для бактерий определённого вида, что используются для идентификации (например, количество и характер расположения зёрен волютина у возбудителя дифтерии).

3. Прокариотическая клетка может иметь защитные приспособления (эндоспора, капсула), с помощью которых она выживает в неблагоприятных условиях. Эти органеллы более подробно будут рассматриваться ниже.

4. Подвижные бактерии имеют жгутики (а спирохеты – аксиальные фибриллы), служащие им органами движения.

5. Бактериальные клетки очень многих бактерий имеют реснички (пили, фимбрии) – полые белковые трубочки на поверхности клетки (Рис. 4-5). Белок, из которого состоят пили, называется пилин.

а. Пили общего типа используются бактериальной клеткой для адгезии на питательном субстрате.

б. Половые (конъюгативные, секс-пили) служат для передачи генетического материала от одной прокариотической клетки к другой.

4.3. Строение клеточной стенки бактерий

Клеточная стенка – одна из самых важных структур бактериальной клетки. Лишены её только микоплазмы и дефектные формы бактерий. У эубактерий существует два типа строения клеточной стенки (Рис. 4-6), в зависимости от чего они относятся к отделу Firmicutes (грамположительная клеточная стенка, эти бактерии по Граму окрашиваются в синий цвет) либо Gracilicutes (грамотрицательная клеточная стенка, эти бактерии по Граму окрашиваются в красный цвет).

А. Грамположительная клеточная стенка, по сравнению с грамотрицательной, более толстая, но более простая по строению.

1. Её основу составляет многослойны пласт пептидогликана, тесно прилегающий к цитоплазматической мембране.

2. Пептидогликановый слой пронизывают тейхоевые кислоты – полимерные структуры, занимающие пограничное положение между гликоконъюгатами и фосфолипидами (Рис. 4-7).

Б. Грамотрицательная клеточная стенка тоньше, чем грамотрицательная, но более сложная по своему строению.

1. Пептидогликан представлен в ней тонким слоем.

2. При этом пептидогликановый слой не тесно прилегает к цитоплазматической мембране, а отделён от неё периплазматическим пространством.

3. Грамотрицательная клеточная стенка, кроме того, содержит так называемую наружную мембрану. Эта структура имеет иное строение, нежели цитоплазматическая мембрана и состоит в основном из липополисахарида.

4.4. Дефектные формы бактерий

Бактерии могут в силу определённых причин терять клеточную стенку. Например, в результате действия -лактамных антибиотиков (пенициллинов, цефалоспоринов) или лизоцима. Такие формы бактерий называются дефектными.

А. Дефектные формы бактерий, полностью лишённые клеточной стенки, называются протопластами. Протопласты чаще всего образуются при потере клеточной стенки грамположительными бактериями.

Б. Дефектные формы бактерий, частично лишённые клеточной стенки, называются сферопластами. Сферопласты чаще всего образуются при потере клеточной стенки грамотрицательными бактериями.

В. Дефектные формы бактерий сохраняют метаболическую активность, но – как правило – теряют способность к делению. Но всякое правило имеет исключения: те дефектные формы (вне зависимости от того протопласты это или сферопласты), которые сохранили способность к делению, называются L-формами бактерий. Своё название они получили в честь Института имени Листера, где были открыты.

6.3. Окраска по Граму

Окраска по Граму – основной метод окраски в бактериологии. С окраски по Граму начинается описание морфологических свойств. Такое значение этого метода обуславливается тем, что окраска бактериальной клетки по Граму зависит от типа строения её клеточной стенки и, соответственно, принадлежности к отделу Firmicutes или Gracilicutes – первого этапа идентификации любого вида в бактериологии. Окраска по Граму осуществляется в четыре этапа (Рис. 6-5 – 6-8).

А. На первом этапе фиксированный мазок окрашивается генциановым фиолетовым.

1. Окрашивание продолжается 1 – 2 минуты.

2. И грамположительные и грамотрицательные бактерии окрашиваются этой краской в синий цвет.

Б. На втором этапе мазок обрабатывается раствором Люголя, который формирует с генцианвиолетом красящий комплекс, локализующийся на цитоплазматической мембране.

1. Обработка раствором Люголя продолжается 1 – 2 минуты.

2. И грамположительные и грамотрицательные бактерии на этом этапе остаются синими.

В. На третьем этапе мазок обесцвечивается спиртом.

1. Обесцвечивание спиртом продолжается примерно 20 секунд с последующим обильным промыванием водой.

2. Грамположительные бактерии за это время не успевают обесцветиться и остаются синими, а грамотрицательные, вследствие более тонкого слоя пептидогликана, препятствующего вымыванию спиртом красящего комплекса, обесцветиться успеют и, следовательно, станут бесцветными.

Г. На четвертом этапе мазок окрашивается водным фуксином или другой красной краской – сафранином.

1. Докраска красной краской продолжается 1 – 2 минуты. Причем, этот этап лучше продлить подольше, так как после обесцвечивания бактериальная клеточная стенка воспринимает краску хуже, чем обычно.

2. Грамположительные бактерии остаются синими, так как они уже окрашены более темной краской а грамотрицательные, которые на предыдущем этапе обесцветились, на этом этапе окрашиваются в красный цвет

Д. Грамположительные бактерии составляют меньшую часть тех бактерий, которые изучает медицинская микробиология. Ниже приводятся основные (этот перечень будет позже добавлен неспорообразующими анаэробами).

1. Грамположительными являются большинство кокков (кроме нейссерий): стафилококки, стрептококки и пневмококки, энтерококки.

2. Среди палочек грамположительными являются листерии, бактерии актиномицетного ряда (актиномицеты, микобактерии, коринебактерии), спорообразующие палочки (бациллы и клостридии).

Е. Большинство бактерий, имеющих медицинское значение, грамотрицательные. Лишь по отношению к микоплазмам не корректно говорить об их грамотрицательности (хотя по Граму они окрашивались бы в розовый цвет – если бы их так окрашивали, так как на практике этот метод в изучении микоплазм не применяется). Дело в том, что грамоложительные и грамотрицательные бактерии отличаются друг от друга типом клеточной стенки (прежде всего – количеством содержащегося в ней пептидогликана), а у микоплазм клеточной стенки с содержанием пептидогликана нет.

1. Из кокков грамотрицательные – нейссерии.

2. Грамотрицательными являются большинство палочек. Собственно все, за исключением перечисленных выше грамположительных).

3. Клеточную стенку грамотрицательного типа имеют также спирохеты.

4.5. Микро- и макрокапсула бактерий

Термин капсула используется для обозначения двух, схожих по своему назначению, но различных по строению структур бактериальной клетки.

А. Просто капсулой чаще всего называют макрокапсулу – выраженный слизистый слой, покрывающий клеточную стенку и имеющий фибриллярное строение.

1. Макрокапсула (Рис. 4-8) у большинства бактерий состоит из полисахаридов, у некоторых – из полипептидов.

2. Особенно выражена (и вследствие этого используется в идентификации) макрокапсула у клебсиелл, пневмококка (Streptococcus pneumoniae), бациллы сибирской язвы (Bacillus anthracis), Clostridium perfringens и большинства коккобактерий.

3. Для выявления макрокапсулы разработаны специальные методы окраски. Но если мазок сделан из патологического материала, взятого от человека, макрокапсула будет видна при любом методе окраски в виде неокрашенного ореола вокруг бактериальной клетки («негативное контрастирование»).

Б. Микрокапсулу образуют фибриллы, тесно прилегающие к клеточной стенке.

1. Фибриллы, образующие микрокапсулу состоят из мукополисахарида.

2. Микрокапсулой обладают многие виды бактерий.

3. Выявляется микрокапсула при электронно-микроскопическом исследовании.

В. Функция капсулы заключается в защите бактериальной клетки от антител и фагоцитов.

Г. Соответственно своей функции, капсула образуется бактериальной клеткой или при нахождении её в организме человека или при росте культуры на искусственной питательной среде, содержащей сыворотку крови

4.6. Жгутики бактерий

Жгутики служат бактериальной клетке органами движения. Лишь у спирохет эту функцию выполняет осевая нить (аксиальная фибрилла). И жгутики бактерий, и осевые нити спирохет состоят из сократительного белка флагеллина.

А. Жгутики обладают вращательным типом движения.

Б. Существует классификация бактерий по числу и расположению их жгутиков (Рис. 4-9).

1. Бактерии, имеющие один жгутик называются монотрихами. Как правило, такой жгутик расположен на полюсе клетки. Монотрихи – самые «быстроходные» среди бактерий.

2. Бактерии, имеющие более одного жгутика, называются политрихами.

а. Если у бактерий имеется – как правило, на полюсе клетки – пучок жгутиков, то такие бактерии называются лофотрихами.

б. Если пучки жгутиков (или два жгутика) располагаются на противоположенных полюсах клетки, то такие бактерии называются амфитрихами.

в. Если жгутики располагаются по всему периметру клетки, то такие бактерии называются перитрихами.

3. Бактерии, лишённые жгутиков, называются атрихами.

В. Методы выявления жгутиков условно можно разделить на две группы: косвенные и прямые.

1. Косвенно жгутики можно выявить по факту подвижности бактериальных клеток. Для выявления подвижности бактерий готовят, например, препарат «раздавленная» (или «придавленная») капля. Для этого каплю бактериальной культуры – лучше, если эта культура будет при этом выращена на жидкой питательной среде – помещают на предметное стекло и накрывают покровным стеклом. Микроскопируют или с помощью иммерсионной системы или использую объектив 40. Для того, чтобы чётче разглядеть неокрашенные живые бактерии, можно несколько затемнить поле зрения, приспустив конденсор.

2. При прямом обнаружении жгутиков их непосредственно наблюдают в микроскоп.

а. Для этого применяются специальные методы окраски. Например, метод Морозова основан на обволакивании жгутика тонким слоем солей серебра или ртути. При этом жгутик, не меняя своей формы, становиться чуть толще. Этого достаточно, чтобы структура, «перешагнув» нижнюю границу разрешающей способности иммерсионного микроскопа, стала видимой.

б. Пучок жгутика у лофотрихов можно обнаружить с помощью фазово-контрастного микроскопа.

в. И, естественно, жгутики видны при использовании электронного микроскопа.

4.7. Спора и спорообразование у бактерий

У бактерий существует два типа спор: эндоспора и экзоспора.

А. Под эндоспорой понимают покоящуюся форму бактериальной клетки, позволяющую ей сохранить свою наследственную информацию в неблагоприятных условиях внешней среды. Эндоспору чаще называют просто спорой.

1. Функция споры состоит в защите бактерий от неблагоприятных физико-химических факторов внешней среды (неблагоприятная температура, рН и т.п.). Активно спорулировать бактериальная культура начинает также при истощении питательной среды.

2. Характеризуя принцип строения споры, можно сказать, что она представляет собой ДНК, окруженную многослойной оболочкой, в том числе содержащей пептидогликановый слой (кортекс).

3. Спора образуется бактериями при нахождении вне человеческого организма, в том числе при росте на искусственных питательных средах.

4. Высокая устойчивость спор (у некоторых видов они могут сохраняться столетиями) обусловлена прежде всего их высокой термоустойчивостью. Это свойство обеспечивается особым химическим строением споры.

а. Спора практически лишена свободной воды. Все молекулы воды в её составе находятся в химически связанном состоянии.

б. Химический состав споры, в отличие от вегетативной бактериальной клетки, отличается высоким содержанием кальция.

в. В состав споры входит дипиколиновая кислота. Этого соединения нет в вегетативной бактеральной клетке. Кальциевые соли дипиколиновой кислоты, входящие в состав оболочек споры, придают им высокую термостойкость.

г. Белок, входящий в состав споры, отличается по своему строению от белка вегетативной бактериальной клетки. Особый аминокислотный состав белков споры также обуславливает его устойчивость к высокой температуре.

д. Петидогликан, входящий в состав кортекса споры, также отличается по своему химическому составу от пептидогликана клеточной стенки вегетативной бактериальной клетки, что, в свою очередь, обуславливает его устойчивость к высокой температуре.

5. В процессе образования споры выделяют пять стадий

а. На первой стадии вокруг нуклеоида образуется уплотнённый участок цитоплазмы, формируя так называемую спорогенную зону.

б. На второй стадии происходит изолирование спорогенной зоны от остальной части цитоплазмы врастающей внутрь клетки цитоплазматической мембраной, в результате чего образуется проспора.

в. На третей стадии формируется кортекс.

г. На четвёртой стадии появляется внешняя оболочка, содержащая дипиколиновую кислоту.

д. И, наконец, на пятой стадии вегетативная часть клетки отмирает.

6. Процесс прорастания споры также осуществляется в пять стадий (Рис. 4-10).

а. Сначала происходит набухание споры, вызванное увеличением в её составе количества свободной воды.

б. Это делает возможным активацию в споре ферментативных процессов.

в. Ферменты разрушают плотные оболочки споры.

г. Из споры выходит ростовая трубка, на основе которой формируется протопласт вегетативной бактериальной клетки.

д. И на последней стадии прорастания споры у вновь образованной бактериальной клетки синтезируется клеточная стенка.

7. Из бактерий, имеющих медицинское значение спору образуют бациллы и клостридии.

а. У бацилл (бактерий, относящихся к роду Bacillus) спора не превышает диаметр бактериальной клетки

б. У клостридий (бактерий, относящихся к роду Clostridium) диаметр споры больше диаметра бактериальной клетки

8. Для контрастного выявления спор используют метод окраски по Цилю-Нильсену или его модификации.

Б. В отличие от эндоспоры экзоспора служит не для сохранения генетического материала бактериальной клетки при неблагоприятных условиях внешней среды, а для размножения. С помощью экзоспор размножаются, например, почвенные актиномицеты – стрептомицеты. Вследствие этого экзоспоры отличаются по своим свойствам от просто спор

1. По сравнению с эндоспорой экзоспора менее устойчива во внешней среде.

2. Экзоспора, как явствует из её названия, образуется не внутри, а вне бактериальной клетки.

3. Одна бактериальная клетка образует не одну, а много экзоспор.

5.1. Особенности морфологии и ультраструктуры актиномицетов

Актиномицеты – типичные представители ветвящихся бактерий. Другие бактерии, которые, подобно актиномицетам, обладают способностью к ветвлению (в частности, коринебактерии и микобактерии), называются поэтому бактериями актиномицетного ряда. Однако актиномицеты отличаются и от них и от остальных прокариот рядом морфологических особенностей.

А. Актиномицеты классифицируются в отельный порядок Actinomycetales, в котором, в качестве примера, рассмотрим представителей двух семейств: Actinomycetaceae и Streptomycetaceae (содержащие, соответственно роды Actinomyces и Streptomyces).

Б. Актиномицеты и стрептомицеты имеют различное медицинское значение.

1. Представители рода Actinomyces являются патогенными для человека микроорганизмами – они вызывают актиномикоз. В медицинской микробиологии именно эти актиномицеты часто называются истинными актиномицетами. В поражённых тканях актиномицеты образуют специфические скопления, образованные переплетёнными бактериальными телами, которые могут кальцифицироваться. Эти образования называются друзами.

2. Представители рода Streptomyces чрезвычайно редко вызывают у человека патологические процессы. Для медицинской микробиологии они интересны, прежде всего, как продуценты антибиотиков. Большинство природных антибиотиков бактериального происхождения продуцируются именно стрептомицетами.

В. Актиномицеты и стрептомицеты довольно резко отличаются друг от друга по внешнему виду.

1. Представители рода Actinomyces (Рис. 5-1) представляют собой слабоветвящиеся палочки с колбовидными утолщениями на концах.

2. формируют сильноветвящиеся нити (гифы).

Г. Отличаются актиномицеты от стрептомицетов и способностью образовывать экзоспоры. Актиномицетам такой способ размножения не присущ, тогда как для стрептомицетов образование экзоспор – основной способ размножения.

Д. И истинные актиномицеты и стрептомицеты в составе пептидогликана клеточной стенки содержат сахара, которые отсутствуют у других бактерий.

5.2. Особенности морфологии и ультраструктуры спирохет

Спирохеты – извитые бактерии. Но не только форма отличает их от других прокариот. Ультраструктура спирохет имеет уникальные черты, резко отличающие их от остальных бактерий.

А. Так же как и актиномицеты, спирохеты классифицируются в отдельный порядок – Spirochaetales. Патогенные для человека спирохеты относятся к трём родам: Treponema, Leptospira и Borrelia.

Б. Друг от друга спирохеты этих трёх родов отличаются характером и количеством завитков.

1. Трепонемы имеют 8 – 12 завитков одинаковой амплитуды (Рис. 5-3).

2. У лептоспир первичные завитки практически не видны, а вторичные (так называемые «крючья») направлены в одну или в разные стороны, что делает эти бактерии похожими на латинские буквы С и S (Рис. 5-4).

3. У боррелий же количество и амплитуда завитков не постоянны, они даже могут образовывать петли

В. Основной особенностью ультраструктуры спирохет является то, что в их периплазматическом пространстве, т.е. в толще клеточной стенки, вдоль всего тела бактерий проходит осевая нить (аксиальная нить или фибрилла), состоящая – аналогично жгутику – из сократительного белка флагеллина и служащая органом движения (Рис. 5-6). Поэтому спирохеты двигаются благодаря сокращению всего тела.

Г. Основной метод окраски спирохет – по Романовскому-Гимзе. Эта окраска используется также и как метод дифференциации, поскольку спирохеты разных родов окрашиваются по Романовскому-Гимзе в разный цвет: трепонемы – в розовый, лептоспиры в красный, а боррелии в синий.

Д. Однако, при микроскопическом обнаружении трепонем и лептоспир преимущественно используется темнопольная микроскопия. И лишь боррелии – самые толстые из спирохет и в отличие от остальных хорошо воспринимающие анилиновые красители – можно обнаруживать с помощью любого вида микроскопии и любого метода окрашивания.

5.3. Особенности морфологии и ультраструктуры риккетсий и хламидий

Риккетсии и хламидии являются облигатными внутриклеточными паразитами и поэтому выделяются среди прокариот в отдельную группу.

А. Однако, различия между риккетсиями и хламидиями настолько велики, что они классифицируются на самостоятельные порядки: Rickettsiales (патогенные для человека риккетсии относятся к семейству Rickettsiaceae, родам Rickettsia, Coxiella, Rochalimaea) и Chlamydiales (патогенные для человека хламидии относятся к семейству Chlamydiaceae, роду Chlamydia).

Б. Разная у них и форма бактериальной клетки.

1. Риккетсии, в основном, коккобактерии (Рис 5-7).

2. Хламидии имеют форму кокков (Рис. 5-8).

В. По-разному они и локализуются в клетке-хозяине.

1. Риккетсии располагаются диффузно в цитоплазме (Рис.5-9) или, в зависимости от вида, в ядре. Некоторые – и в цитоплазме и в ядре.

2. Хламидии формируют в поражённой клетке цитоплазматические включения (микроколонии, окружённые общей оболочкой)

Г. Для выявления риккетсий мазки окрашивают по Романовскому-Гимзе и по Здродовскому. Клетка-хозяин выглядит при обоих методах примерно одинаково.

1. По Романовскому-Гимзе риккетсии окрашиваются в тёмно-синий цвет на фоне голубой цитоплазмы.

2. По Здрадовскому же они будут выглядеть красными на фоне такой же голубой цитоплазмы клетки-хозяина.

5.4. Особенности морфологии и ультраструктуры микоплазм

Микоплазмы резко отличаются от других прокариот: во-первых, они не имеют клеточной стенки, а, следовательно, и не имеют определённой формы и размера (Рис. 5-11), во-вторых, цитоплазматическая мембрана этих бактерий содержит в своём составе стерины, в-третьих, микоплазмы резко отличаются от остальных прокариот по структуре ДНК.

А. Микоплазмы классифицируются в особый порядок (Tenericutes). В настоящее время этот термин часто заменяется названием класса, к которому относятся эти микроорганизмы – Mollicutes (при этом в классификации других прокариот понятие «класс» практически потеряло своё таксономическое значение). Патогенные для человека микоплазмы относятся к порядку Mycoplasmatales, семейству Mycoplasmataceae, родам Mycoplasma и Ureaplasma.

Б. Для обнаружения микоплазм используются, в основном, два вида микроскопии – фазово-контрастная и электронная.