Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Otvety_ko_2_voprosam_po_EM.doc
Скачиваний:
14
Добавлен:
02.08.2019
Размер:
593.41 Кб
Скачать

Потери в трансформаторах

Потери энергии в стали сердечника трансформатора складываются из потерь на гистерезис и потерь на вихревые токи.

Потери на гистерезис можно сравнить с потерями на трение — под воздействием переменного магнитного поля магнитные домены, подобные миниатюрным магнитам, должны изменять свое направление, преодолевая силы внутреннего сцепления в ферромагнетике. Чем тверже ферромагнетик, тем больше потери на гистерезис. Эти потери за один цикл перемагничивания пропорциональны площади петли гистерезиса материала. В общем виде мощность этих потерь выражается формулой

P1 = Kг f BmnG

где Kг — гистерезисный коэффициент, значение которого зависит от сорта стали; f —частота переменного тока, Вт — амплитуда магнитной индукции; G — масса сердечника. Значение показателя степени можно считать п = 2 при Вт > 1 Т и п = 1,6 при Вт < 1 Т.

Потери на вихревые токи определяются ориентировочно на основании приближенного расчета мощности, развиваемой токами. Эдс, индуктируемую в стали переменным магнитным потоком, можно выразить через трансформаторную эдс, так как масса металла подобна некоторому короткозамкнутому витку, следовательно,

EB= 4,44 fФm =4,44 f SB Bm

здесь SB —площадь, охватываемая этим витком и пронизываемая потоком. Чем эти площадь больше, чем больше вихревые токи, создаваемые индуктируемой эдс. Мощность потерь в контуре подобного вихревого тока

PB. кон = EB2g

где g — активная проводимость этого контура. Расчет такой мощности представляет собой существенные трудности, но для качественной оценки потерь существенно лишь то, что проводимость g пропорциональна удельной проводимости у стали. Таким образом, мощность потерь на вихревые токи можно выразить следующим образом:

PB = KB f 2Bm2g G,

где KB — коэффициент вихревых токов, значение которого зависит от сорта стали и толщины листа стали.

Амплитуда магнитной индукции Вт в современных трансформаторах, как и в сердечниках большинства машин переменного тока, больше 1 Тл. Следовательно, как потери на вихревые токи, так и потери на гистерезис в них пропорциональны В2т и (SB Bm)2=Фm Таким образом, суммарные потери энергии в стали сердечника пропорциональны квадрату магнитного потока, а потери в проводниках обмотки — квадрату тока.

Практически при расчетах определяются суммарные потери в стали с помощью справочных таблиц. Например, потери в стали Э41 — 0,35 (при толщине листа 0,35 мм) при амплитуде индукции Вт = 1 Тл составляют 1,3 Вт/кг, а при Вт = 1,5 Тл они будут уже 3 Вт/кг.

Режимы работы трансформатора

1. Режим холостого хода. Данный режим характеризуется разомкнутой вторичной цепью трансформатора, вследствие чего ток в ней не течёт. С помощью опыта холостого хода можно определить КПД трансформатора, коэффициент трансформации, а также потери в стали.

При разомкнутой вторичной обмотке трансформатор работает в режиме холостого хода. Ток холостого хода i0, проходящий по первичной обмотке, имеет две составляющие: активную i0a и реактивную i0р. При этом

Í = Í0a + Í0р

Реактивная составляющая называется намагничивающим током, этот ток создает магнитный поток в магнитопроводе трансформатора. Активная составляющая обеспечивает поступление в трансформатор электрической энергии, необходимой для компенсации потерь энергии в стали магнитопровода.

При холостом ходе э. д. с. Е1 практически равна питающему напряжению U1, так как падение напряжения в первичной обмотке, создаваемое небольшим током холостого хода, мало.

2. Нагрузочный режим. Этот режим характеризуется замкнутой на нагрузке вторичной цепи трансформатора. Данный режим является основным рабочим для трансформатора.

Схема магнитных потоков в трансформаторе при нагрузке

Магнитный поток трансформатора определяется значением питающего напряжения U1 и практически не зависит от нагрузки. Поэтому результирующая м. д. с, создаваемая при нагрузке то- ками i1, и i2, должна оставаться такой же, как и при холостом ходе:

Ḟ1 + Ḟ2 = Ḟ0 где

F1=I1ω1 — м. д. с. первичной обмотки при нагрузке;

F2=I2ω2—м. д. с. вторичной обмотки при нагрузке;

F0=I0ω0—м. д. с. первичной обмотки при холостом ходе.

3. Режим короткого замыкания. Этот режим получается в результате замыкания вторичной цепи накоротко. С его помощью можно определить потери полезной мощности на нагрев проводов в цепи трансформатора.

Напряжение короткого замыкания является весьма важным эксплуатационным показателем, его выражают в процентах от U1НОМ:

uk% = (Uk / U1НОМ) 100

Установившийся ток короткого замыкания трансформатора в общем случае

Ik = Iном (100 / uk%) где Iном — номинальный ток первичной обмотки.

Векторная диаграмма реального трансформатора

Векторную диаграмму вторичной обмотки трансформатора (рис. а) строят согласно уравнению

Векторную диаграмму первичной обмотки трансформатора (рис. б) строят в соответствии с уравнением

Режим холостого хода

Холостым ходом называют такой режим, при котором к первичной обмотке трансформатора подведено номинальное напряжение при номинальной частоте, а вторичная обмотка разомкнута и ток в ней равен нулю.

При подключении к первичной обмотке трансформатора синусоидально изменяющегося напряжения в ней потечет переменный ток холостого хода I0. Этот ток создает м. д. с. I0w1 , где w1 — число витков первичной обмотки трансформатора, последовательно соединенных между собой.

М. д. с. I0w1 создает магнитный поток, большая часть которого замыкается по стальному сердечнику и сцепляется с обеими обмотками трансформатора. Эту часть магнитного потока называют основным и обозначают буквой Ф. Небольшая часть магнитного потока замыкается по воздуху и сцепляется только с первичной обмоткой, не принимая участия в индуктировании э. д. с. во вторичной обмотке. Эту часть потока называют потоком рассеяния и обозначают Фрc (рис. 88).

Основной магнитный поток Ф индуктирует в первичной обмотке э. д. с. Е1 и во вторичной э. д. с. Е2.

Поток рассеяния Фрс1 индуктирует в первичной обмотке э. д. с. рассеяния E рс1. При протекании тока по активному сопротивлению обмотки возникает э. д. с. активного сопротивления Еа, направленная против тока.

Согласно уравнению равновесия э. д. с, напряжение U1, подведенное к первичной обмотке трансформатора, уравновешивается в любой момент времени совокупностью обратных э. д. с, возникающих в этой обмотке, т. е.

Ток холостого хода состоит из двух составляющих:

а) активной, соответствующей мощности холостого хода Р0I , и совпадающей с вектором напряжения U1 ;

б) реактивной, намагничивающей составляющей I , которая совпадает с вектором основного магнитного потока Ф. Действующее значение тока холостого хода:

(79)

Активная составляющая тока может быть определена из формулы:

(80)

Обычно соотношение между активной составляющей тока и током холостого хода следующее:

Потери мощности при холостом ходе трансформатора незначительны. Так как ток холостого хода трансформатора мал, то потерями в меди первичной обмотки пренебрегают и считают, что мощность холостого хода идет только на покрытие потерь в стали, т. е.

Потери в стали трансформатора не зависят от его нагрузки. Они пропорциональны квадрату магнитной индукции В2, так как частота в сети постоянна, т. е.

Намагничивающий ток Iη является главной составляющей тока холостого хода трансформатора I10. Этот ток является реактивным, т.е. Iη=I10p. Однако реальный трансформатор в режиме холостого хода потребляет от источника переменного тока некоторую активную мощность, так как при переменном магнитном потоке в стальном магнитопроводе возникают потери энергии от гистерезиса и вихревых токов (магнитные потери ΔPc). Поэтому ток холостого хода I10 должен иметь еще и активную составляющую , которая обеспечивает поступление в первичную обмотку мощности, компенсирующей магнитные потери (электрическими потерями в первичной обмотке в этом режиме можно пренебречь из-за малости тока холостого ход).

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]