Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Otvety_ko_2_voprosam_po_EM.doc
Скачиваний:
14
Добавлен:
02.08.2019
Размер:
593.41 Кб
Скачать

Принцып действия трансформатора

Принцип действия трансформатора основан на законе

электромагнитной индукции.

Если на замкнутом стальном сердечнике разместить две электрически не связанные между собой обмотки (рис. 88) и одну из них присоединить к сети переменного тока, то при прохождении перемен­ного тока по первичной обмотке в стальном сердечнике возникает переменный магнитный поток Ф.

Рис. 88. Принципиальная схема трансформатора при холостом ходе.

Магнитный поток Ф, пронизывая первичную и вторичную обмотки, согласно закону электромагнитной индукции, индуктирует в каждом витке первичной и вторичной обмотки одинаковую э. д. с, так как обе обмотки пронизываются одним и тем же магнитным потоком Ф. Если число витков вторичной обмотки меньше числа витков первичной, то и суммарная э. д. с, индуктируемая во вторичной обмотке, во столько же раз меньше э. д. с. первичной обмотки, во сколько раз меньше число витков в ней.

Таким образом, отношение э. д. с, индуктируемых в обмотках, равно отношению чисел их витков:

где Е1 и Е2 — э. д. с. первичной и вторичной обмоток (в);

w1 и w2 - числа витков первичной и вторичной обмоток.

При холостом ходе э. д. с. первичной обмотки Е1 при­близительно равна напряжению на зажимах первичной обмотки U1, так как падение напряжения в ней при холо­стом ходе мало. Поэтому отношение э. д. с. можно заме­нить отношением напряжений на зажимах обмоток трансформатора U1 и U20.

(73)

Это отношение k называют коэффициентом трансформации.

Коэффициентом трансформации трансформатора называют отношение напряжения на зажимах первичной обмотки трансформатора к напряжению на зажимах его вторичной обмотки при холостом ходе.

Если пренебречь потерями, то можно предположить, что мощность, подведенная к трансформатору, равна мощности, отдаваемой им, т. е.

Откуда

(74)

т. е. токи в обмотках трансформатора обратно пропор­циональны индуктируемым в этих обмотках э. д. с.

Уравнения идеального трансформатора

Идеальным трансформатор — трансформатор, у которого отсутствуют потери энергии на нагрев обмоток и потоки рассеяния обмоток[14]. В идеальном трансформаторе все силовые линии проходят через все витки обеих обмоток, и поскольку изменяющееся магнитное поле порождает одну и ту же ЭДС в каждом витке, суммарная ЭДС, индуцируемая в обмотке, пропорциональна полному числу её витков[15]. Такой трансформатор всю поступающую энергию из первичной цепи трансформирует в магнитное поле и, затем, в энергию вторичной цепи. В этом случае поступающая энергия, равна преобразованной энергии:

Где P1 — мгновенное значение поступающей на трансформатор мощности, поступающей из первичной цепи,

P2 — мгновенное значение преобразованной трансформатором мощности, поступающей во вторичную цепь.

Соединив это уравнение с отношение напряжений на концах обмоток, получим уравнение идеального трансформатора:

Таким образом получаем, что при увеличении напряжения на концах вторичной обмотки U2, уменьшается ток вторичной цепи I2.

Для преобразования сопротивления одной цепи к сопротивлению другой, нужно умножить величину на квадрат отношения.[16] Например, сопротивление Z2 подключено к концам вторичной обмотки, его приведённое значение к первичной цепи будет . Данное правило справедливо также и для вторичной цепи: .

Векторная диаграмма идеального трансформатора

Уравнения линейного трансформатора.

Пусть i1, i2 — мгновенные значения тока в первичной и вторичной обмотке соответственно, u1 — мгновенное напряжение на первичной обмотке, RH — сопротивление нагрузки. Тогда

Здесь L1, R1— индуктивность и активное сопротивление первичной обмотки, L2, R2— то же самое для вторичной обмотки, L12— взаимная индуктивность обмоток. Если магнитный поток первичной обмотки полностью пронизывает вторичную, то есть если отсутствует поле рассеяния, то . Индуктивности обмоток в первом приближении пропорциональны квадрату количества витков в них.

Мы получили систему линейных дифференциальных уравнений для токов в обмотках. Можно преобразовать эти дифференциальные уравнения в обычные алгебраические, если воспользоваться методом комплексных амплитуд.

Для этого рассмотрим отклик системы на синусоидальный сигнал u1=U1 e-jω t (ω=2π f, где f — частота сигнала, j — мнимая единица). Тогда i1=I1 e^-jω t и т. д., сокращая экспоненциальные множители получим

U1=-jωL1 I1 -jωL12 I2+I1 R1

-jωL2 I2 -jω L12 I1+I2 R2 =-I2 Zн

Метод комплексных амплитуд позволяет исследовать не только чисто активную, но и произвольную нагрузку, при этом достаточно заменить сопротивление нагрузки Rн её импедансом Zн. Из полученных линейных уравнений можно легко выразить ток через нагрузку, воспользовавшись законом Ома— напряжение на нагрузке, и т. п.

Т-образная Схема замещения трансформатора

Составление схемы замещения. Систему уравнений (1.20) – (1.22), описывающую электромагнитные процессы в трансформаторе, можно свести к одному уравнению, если учесть, что , и положить

При этом параметры R0 и X0 следует выбирать так, чтобы в режиме холостого хода, когда ЭДС E1 практически равна номинальному напряжению U1, ток

по модулю равнялся бы действующему значению тока холостого хода, а мощность – мощности, забираемой трансформатором из сети при холостом ходе.Решим систему уравнений (1.20) – (1.22) относительно первичного тока

В соответствии с уравнением (1.28) трансформатор можно заменить электрической схемой, по которой можно определить токи Í1 и Í2, мощность P1, забираемую из сети, мощность ΔP потерь и т.д. Такую электрическую схему называют схемой замещения трансформатора

Эквивалентное сопротивление этой схемы

где: , , ,

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]