
- •Методическое пособие для учащихся втуЗов По дисциплине: физика.
- •Оглавление
- •Колебания и волны Механические колебания Свободные колебания.
- •Гармонические колебания.
- •Незатухающие колебания
- •Частота, период, циклическая частота, амплитуда, фаза колебаний.
- •Смещение, скорость, ускорение колеблющейся системы частиц.
- •Энергия гармонических колебаний.
- •Математический маятник, физический маятник, пружинный маятник.
- •Метод векторных диаграмм. Сложение колебаний одного направления.
- •Биения. Сложение перпендикулярных колебаний. Затухающие механические колебания.
- •Уравнение затухающих колебаний. Амплитуда, частота, коэффициент затухания.
- •Волны в упругой среде.
- •Уравнение плоской бегущей волны.
- •Отличие от уравнения колебаний.
- •Типы волн: продольные и поперечные, плоские, сферические.
- •Волновая поверхность, волновой фронт.
- •Волновое уравнение.
- •Частота, период, длина волны.
- •Свойства волн.
- •Энергия волны.
- •Поток энергии.
- •Вектор Умова.
- •Стоячие волны.
- •Интерференция.
- •Координаты пучностей и узлов стоячей волны.
- •Отличие бегущих волн от стоячих.
- •Электромагнитные волны. Гипотеза Максвелла.
- •Источники электромагнитных волн. Волновое уравнение.
- •Скорость распространения электромагнитных волн.
- •Связь со скоростью света в вакууме.
- •Свойства электромагнитных волн: поперечность, синфазность колебаний векторов напряженностей электрического и магнитного полей.
- •Энергия электромагнитных волн.
- •Вектор Пойнтинга.
- •Шкала электромагнитных волн.
- •Оптика. Геометрическая и волновая оптика.
- •Границы применимости.
- •Принцип Ферма.
- •Интерференция.
- •Оптическая длина пути.
- •Расчет интерференционной картины от двух источников.
- •Координаты минимумов и максимумов интенсивности.
- •Интерференция в тонких пленках.
- •Полосы равной толщины.
- •Кольца Ньютона.
- •Применение интерференции.
- •Просветление оптики.
- •Дифракция.
- •Принцип Гюйгенса-Френеля.
- •Метод зон Френеля.
- •Дифракция Френеля.
- •Пятно Пуассона.
- •Дифракция в параллельных пучках. Дифракционная решетка.
- •Период дифракционной решетки.
- •Поляризация света.
- •Естественный и поляризованный свет.
- •Плоскость поляризации. Степень поляризации.
- •Закон Малюса.
- •Анализаторы и поляризаторы.
- •Закон Брюстера.
- •Двойное лучепреломление.
- •Интерференция поляризованного света.
- •Оптическая ось кристалла.
- •Главное сечение кристалла.
- •Оптически активные вещества.
- •Вращение плоскости поляризации.
- •Электрооптический эффект Керра.
- •Дисперсия света.
- •Нормальная и аномальная дисперсия.
- •Поглощение света веществом.
- •Закон Бугера-Ламберта.
Интерференция в тонких пленках.
Полосы равной толщины.
Полосы равной толщины, один из эффектовоптики тонких слоев, в отличие отполос равного наклона, наблюдаются непосредственно на поверхности прозрачного слоя переменной толщины (рис. 1). Возникновение П. р. т. обусловленоинтерференцией света, отражённого от передней и задней границ слоя (П. р. т. в отражённом свете), или света, проходящего прямо через слой, с дважды отражённым на его границах (П. р. т. в проходящем свете). Полосами в строгом смысле (отчётливыми, попеременно тёмными и светлыми) обычно являются лишь П. р. т.монохроматическом светеили близком к нему (свете, длины волн которого заключены в сравнительно небольшом интервале). При этом максимумы и минимумы освещённости полос совпадают с линиями на поверхности слоя, по которымразность ходаинтерферирующих лучей одинакова и равна целому числу /2. На этих линиях одинакова геометрическая толщина слоя — отсюда название «П. р. т.». При освещениибелым светомналожение П. р. т., отвечающих лучам с разными , создаёт сложную радужно-цветовую картину, в которой П. р. т. лучей с отдельными зачастую неразличимы. П. р. т. обусловливают радужную окраску тонких плёнок (мыльных пузырей, масляных и бензиновых пятен на воде, плёнок окислов на металлах, в частностицвета побежалости, и пр.). Их используют для определения микрорельефа тонких пластинок и плёнок (рис. 2), в рядеинтерферометров и др. устройств для точных измерении (см., например,Ньютона кольцаи рис. к этой статье; кольца Ньютона — частный пример П. р. т.).
Рис. 1. Разность хода интерферирующих лучей, отражённых от верхней и нижней границ тонкого слоя, зависит от углов падения освещающих лучей. Однако разброс этих углов даже в случае протяжённых источников света обычно столь невелик, что разность хода, приобретаемая в точке М слоя лучами 1—1' и 2—2'; которые испущены разными участками (S1и S2) источника, практически одинакова. Поэтому полосы равной толщины локализованы непосредственно на поверхности слоя и их можно наблюдать без вспомогательных оптических устройств (линза на рис. может быть хрусталиком глаза). М' — точка на сетчатке глаза (или — при использовании дополнительной линзы — на экране), где фокусируется изображение точки М поверхности слоя, т. е, одной из точек линии равной толщины.
Рис. 2. Полосы равной толщины на поверхности слюдяной пластинки, характеризующие микрорельеф этой поверхности.
рис. 1 рис. 2
Кольца Ньютона.
Кольца Ньютона - интерференционная картина, возникающая в проходящем или отраженном свете в окрестности точки соприкосновении выпуклой поверхности с плоскостью.
После отражения лучей на границах раздела стекло-воздух и воздух стекло лучи интерферируют, образуют интерференционную картину в виде концентрических колец.
---------------------------------------------------------------------------------------------------------------------
Это оптическое явление, возникающее в тех случаях, когда в компьютер импортируется изображение с прозрачной пленки. Подобно радуге, появляющейся на поверхности мыльного пузыря, кольца появляются при плотном соприкосновении двух поверхностей, когда между ними возникает очень тонкий промежуток. Появляются, так называемые, интерференционные полосы. Чтобы избежать этого явления при сканировании прозрачных пленок, нужно класть пленку лицевой стороной прямо на стеклянную поверхность сканера.