Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Микроскопия.doc
Скачиваний:
25
Добавлен:
11.07.2019
Размер:
15.83 Mб
Скачать

Ограничения пучков лучей

Ограничения пучков в оптических системах связаны с конечностью физических размеров оптических элементов. Эти ограничения обозначаются на схемах и чертежах в виде диафрагм, роль которых могут играть оправы линз, а также отдельно стоящие диафрагмы.

Ограничение размера пучков - результат совместного действия всех имеющихся в оптической системе диафрагм. Однако можно выделить одну (наименьшую) диафрагму, и считать, что остальные не ограничивают ход лучей. Такая диафрагма называется апертурной (рис.18.).

Р ис.18. Апертурная диафрагма.

Апертура (apertus - открытый) - это понятие, которое в геометрической оптике определяет размер пучка лучей.

Апертурная диафрагма - это диафрагма, которая ограничивает размер осевого пучка (идущего из осевой точки предмета).

Луч, идущий из осевой точки предмета и проходящий через край апертурной диафрагмы называется апертурным лучом.

Рассмотрим апертурную диафрагму и предшествующую ей часть оптической системы.

Параксиальное изображение апертурной диафрагмы в пространстве предметов, сформированное предшествующей частью оптической системы в обратном ходе лучей, называется входным зрачком оптической системы.

Если апертурная диафрагма находится в пространстве предметов, то входным зрачком является сама апертурная диафрагма.

Выходной зрачок - это параксиальное изображение апертурной диафрагмы в пространстве изображений, сформированное последующей частью оптической системы в прямом ходе лучей.

Если апертурная диафрагма находится в пространстве изображений, то выходным зрачком является сама апертурная диафрагма.

Входной зрачок, выходной зрачок и апертурная диафрагма сопряжены. Апертурный луч внутри системы проходит через край апертурной диафрагмы, в пространстве предметов - через край входного зрачка, а в пространстве изображений - через край выходного зрачка.

Главный луч - это луч, идущий из внеосевой точки предмета и проходящий через центр апертурной диафрагмы.

По законам параксиальной оптики главный луч также проходит через центр входного зрачка в пространстве предметов и через центр выходного зрачка в пространстве изображений (рис.19).

Верхний луч внеосевого пучка - это луч, проходящий через верхний край апертурной диафрагмы и соответствующие ему сопряженные точки входного и выходного зрачков.

Н ижний луч внеосевого пучка - это луч, проходящий через нижний край апертурной диафрагмы и соответствующие ему сопряженные точки входного и выходного зрачков.

Рис.19. Внеосевой пучок.

Поле - это часть плоскости предметов, которая изображается оптической системой. В реальной оптической системе поле ограничивается полевой диафрагмой.

Погрешности оптической системы.

Через реальную оптическую систему в отличие от идеальной проходят реальные лучи, а не нулевые (параксиальные). Ход реального луча отличается от хода нулевого (идеального) луча. Отклонение хода реального луча от идеального связано со строгим выполнением законов преломления и отражения на реальных поверхностях оптических систем.

Отличия реальной оптической системы от идеальной:

  • В реальной оптической системе происходит ограничение пучков, то есть не все существующие лучи проходят через оптическую систему и достигают пространства изображений. Проходящие пучки лучей имеют конечные размеры.

  • Ход лучей, проходящих через оптическую систему, не совпадает с ходом идеальных лучей (реальные оптические системы обладают аберрациями).

Аберрации лучей (aberratio - отклонение) - отклонение хода реального луча от идеального.

В реальной оптической системе всегда есть погрешности, отличающие её от идеальной системы. Когда свет точечного источника проходит через линзу, все лучи на самом деле не пересекаются в одной-единственной точке – фокусе. Часть лучей отклоняется в той или иной степени, в зависимости от типа линзы. Аберрации "размывают" изображения объектов, создают окрашивание, ухудшают разрешающую способность оптических систем.

Аберрации делятся на монохроматические (геометрические) и хроматические. Монохроматические аберрации присутствуют, даже если оптическая система работает при монохроматическом излучении.

Монохроматические аберрации делятся на несколько типов:

  • сферическая,

  • кома,

  • астигматизм и кривизна изображения,

  • дисторсия.

Сферическая аберрация приводит к тому, что лучи, выходящие из осевой точки предмета, не пересекаются в одной точке, образуя на плоскости идеального изображения кружок рассеяния (рис.20). Ею обладают все линзы со сферическими поверхностями. Чтобы ее устранить, необходимо сделать поверхности не сферическими. Коррекция этой аберрации достигается применением многолинзовых систем с линзами разного радиуса.

Р ис. 20. Сферическая аберрация.

В торой тип аберрации – кома (κωμα - хвост, пучок волос), возникает, когда лучи образуют с осью небольшой угол. Различием в фокусных расстояниях для лучей пучка, проходящих через разные зоны линзы обусловлено разное поперечное увеличение (рис. 21). Поэтому изображение точечного источника приобретает вид хвоста кометы вследствие смещенных в сторону от фокуса изображений, сформированных периферийными зонами линзы. Т.е. величина комы прямо пропорциональна величине предмета.

Рис. 21. Кома

Третий тип аберрации, тоже относящийся к изображению точек, смещенных с оси, – астигматизм. Лучи от точки, падающие на линзу в разных плоскостях, проходящих через ось системы, формируют изображения на разных расстояниях от центра линзы. Изображение точки получается либо в виде горизонтального отрезка, либо в виде вертикального отрезка, либо в виде пятна эллиптической формы в зависимости от расстояния до линзы.

Даже если рассмотренные три аберрации скорректировать, останутся искривление плоскости изображения и дисторсия. Искривление плоскости изображения очень нежелательно в фотографии, поскольку поверхность фотопленки должна быть плоской.

П ри дисторсии искажается форма объекта. Два основных типа дисторсии – подушкообразная (отрицательная) и бочкообразная (положительная) – показаны на рис. 22, где объектом является квадрат. Небольшая дисторсия вполне терпима в большинстве линзовых систем, но крайне нежелательна в объективах для аэрофотосъемки.

Формулы для аберраций разного типа слишком сложны для полного расчета безаберрационных систем, хотя и позволяют сделать приблизительные оценки в отдельных случаях. Их приходится дополнять численным расчетом хода лучей в каждой конкретной системе.