Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
uchebnoe_posobie_biologicheskie_aktivnye_veshhe...doc
Скачиваний:
44
Добавлен:
08.05.2019
Размер:
1.09 Mб
Скачать

5. 4 Строение витамина в6 и механизм реакции с его участием

Каталитическая роль витамина В6 в реакциях декарбоксилирования и транстаминирования аминокислот сводится к образованию промежуточного соединения - азометина (основания Шиффа) (реакция нуклеофильного присоединения- элиминирования воды). Витамин В6 существует в трех активных формах. В реакции декарбоксилирования участвует пиридоксамин, а в переаминировании - амино- и альдегидная.

Все 3 формы витамина — бесцветные крис­таллы, хорошо растворимые в воде. Активны в виде фосфорных эфиров – пиридоксальфосфата , пиридоксаминофосфата

R - OH + АТФ ———> R – OРО3 Н2 + АДФ

активный витамин В6

Схема реакции переаминирования

- НОН изомеризация

R1 - CH –COOH + В6 – СН = О < =======> R1 - CH –COOH < =======>

| |

NH2 N=СН - В6

аминокислота пиридоксальфосфат азометин ( 1)

+ НОН

R1 - C –COOH < =======> R1 - C –COOH + В6 – СН2 - NH2

| | гидролиз | |

N — СН2 - В6 О

азометин( 2) кетокислота пиридоксаминфосфат

Аминокислота реагирует с пиридоксальфосфатом - альдегидной формой витамина В6 . Образуется азометин(1), который изомеризуется в азометин (2). После гидролиза образуется кетокислота и аминоформа витамина В6- пиридоксаминфосфат.

Пиридоксаминфосфат реагирует с новой кетокислотой, реакция проходит в обратном направлении в соответствии со схемой через образование азометина (2), затем азометина(1) . Кетокислота в итоге превращается в аминокислоту, а витамин В6 вновь возвращается в альдегидную форму.

5.5 Медико - биологическое значение аминокислот

Кроме участия в биосинтезе белков, аминокислоты выполняют множество других самостоятельных функций.

  1. участвуют в биосинтезе нейромедиаторов и гормонов:

- из аминокислоты серина образуется медиатор парасимпатической нервной системы ацетилхолин

- из фенилаланина или тирозина образуется медиатор симпатической нервной системы норадреналин и гормоны адреналин, тироксин.

- из глутаминовой кислоты синтезируется ГАМК

2. аминокислоты глицин, глутаминовая обладают нейромедиаторными функциями

3. аспарагиновая кислота необходима в синтезе азотистых оснований нуклеиновых кислот( аденина, гуанина, урацила, тимина, цитозина)

4. глутаминовая и аспарагиновая кислоты участвуют в обезвреживании аммиака

5. аминокислота метионин передает свою активную метильную группу для образования тимина., холина, адреналина.

6. в условиях углеводного голодания из аминокислот в организме человека синтезируется глюкоза.

Поэтому аминокислоты используются в качестве лекарственных препаратов:

глутаминовая, метионин, глицин, цистеин, триптофан.