
- •1.1 Аминокислоты
- •1.1.1 Номенклатура, особенности пространственного и структурного строения природных аминокислот
- •1.1.2 Классификация природных аминокислот
- •1.1.3 Физико - химические свойства природных аминокислот
- •1.1.4 Качественная реакция обнаружения аминокислот
- •1.1.5 Химические свойства аминокислот
- •1.2 Полипептиды и белки
- •1.2.1 Определения « пептид» «белок» Биологические функции пептидов и белков
- •1.2.2. Классификация белков
- •1.2.3 Первичная структура белка
- •1.2.4 Вторичная структура белка
- •1.2.5 Третичная структура
- •1.2.6 Четвертичная структура
- •1.2.7 Физико-химические свойства белка Амфотерность - кислотно- основные
- •1.2.8 Электрофорез белков
- •1.2.9 Денатурация белка
- •1.2.10 Качественные реакции обнаружения белков в биологических объектах.
- •Незаменимые аминокислоты обозначены звездочкой*
- •1.3 Внутриклеточные посредники ( мессенджеры) передачи сигналов
- •1.3.1 Циклические нуклеотиды
- •2.1.1. Окислительно-восстановительные реакции биоорганических соединений
- •2.2. Карбоновые кислоты и их производные – участники реакций цикла Кребса
- •2.2.1 Цикл Кребса
- •2.2.2. Физико-химические и химические свойства in vivo карбоновых кислот – субстратов цикла Кребса
- •2.2.3 Биоактивные вещества -ингибиторы цикла Кребса
- •2.2.4 Строение макроэргических соединений
- •2.2. 5 Строение коферментов оксидоредуктаз
- •3.1 Классификация углеводов: пищевые и природные углеводы
- •3.1.2 Моносахариды
- •3.1.3 Химические превращения моносахаридов in vivo
- •3.2 Олигосахариды
- •3.2.2 Нередуцирующие дисахариды
- •5. 4 Строение витамина в6 и механизм реакции с его участием
- •5.5 Медико - биологическое значение аминокислот
- •5.6 Строение, физмко-химические свойства мочевины.
- •5.7 Азотистые т основания- производные пиримидина (урацил, тимин, цитозин)
- •5.8 Азотистые основания- производные пурина( аденин, гуанин)
- •5.9 Нуклеотиды
2.1.1. Окислительно-восстановительные реакции биоорганических соединений
Реакция окисления - изменяется состав вещества – добавляются атомы кислорода или удаляются атомы водорода.
Реакции восстановления – изменяется состав вещества – удаляются атомы водорода или добавляются атомы водорода..
К процессам окисления относятся превращения, сопровождающиеся внутримолекулярным дегидрированием (обратный процесс гидрирование – восстановление)
А . С (sp3 ) ———> С (sp2 ) ———> С ( sp)
алкан алкен алкин
- СН2-СН2- - СН= СН-
последовательность
процессов окисления
Б. R– СН3 ———> R– СН2 – ОН ———> R– СН= О
спирт альдегид
В. Окисление тиолов происходит как межмолекулярная реакция дегидрирования, сопровождается , в первую очередь, образованием дисульфидов.
2 R – SH + [ O ] ———> R – S – S – R + НОН
тиол дисульфид
Реакция имеет большое значение в регуляции количества свободных SH групп и дисульфидных связей в белках. Окислители уменьшают содержание свободных тиольных групп, а восстановители - уменьшают число дисульфидных связей.
Тиольные группы в белках играют важную роль в выполнении белками ферментативных и других функций, например, активная форма гормона инсулина содержит две дисульфидные связи. Прикрепление внеклеточных белков к мембране клетки также может осуществляться с участием дисульфидных групп ( белок фибронектин).
В биохимических реакциях окисления и восстановления принимают участие ферменты – оксидоредуктазы. Белковые молекулы не могут осуществлять перенос электронов,
поэтому в составе ферментов обязательно присутствуют органические молекулы или катионы металлов, способные передавать электроны , то есть существовать в окисленной и восстановленной форм е (витамин С , липоевая кислота, кофермент НАД+ / НАДН ,
ФАД / ФАДН2 , гем, содержащий ионы железа (+2) / ( +3), ионы меди ( +1) / ( +2 ) и др .)
Реакции окисления- дегидрирования - типичны для насыщенных атомов углерода,
и функциональных групп; альдегидной, гидроксильной, тиольной и аминогруппы. Наиболее распространенным переносчиком атомов водорода является кофермент НАД+ в реакциях окисления и кофермент НАДН в реакциях восстановления (большинство реакций обратимы) .
Окисление этанола и других алкоголей алкогольдегидрогеназой – первый этап метаболизма экзогенных спиртов, попадающих в организм в составе лекарственных препаратов, алкогольных напитков.
Фермент алкогольдегидрогеназа
СН3 – СН2 – О – Н + НАД+ <————————> СН3 – СН= О + НАДН + Н +
этанол этаналь
Превращения молочной и пировиноградной кислот друг в друга происходит во всех тканях организма. В анаэробных (бескислородных) условиях образование лактата – конечный этап метаболизма глюкозы. Присутствие кислорода снижает образование молочной кислоты и стимулирует ее окисление в пировиноградную, процесс весьма важен для сердечной мышцы, печени.
фермент лактатдегидрогеназа
СН3 –СН – СООН + НАД+ <————————> СН3 – С – СООН + НАДН + Н +
| | |
ОН О
2-гидроксипропановая кислота 2- оксопропановая кислота
молочная кислота ( лактат ) пировиноградная кислота( пируват)
2.1.2 Механизм реакции окисления с участием кофермента НАД +
Окисляемое вещество отдает два атома водорода, один – в виде иона гидрида, другой- в виде протона Атом углерода отдает два электрона химический связи атому водорода, который превращается в отрицательно заряженный анион – гидрид Н –. . Протон уходит из гидроксильной группы и оставляет два электрона связи. Эти да электрона образуют двойную связь.
Н Н –
гидрид- ион присоединяется к
молекуле НАД +
в положение 4
СН3 – С- СООН + НАД +——> СН3 – С- СООН + НАДН + Н+
| | |
О •• Н О
Н+
Протон переходит в раствор
Оставшаяся пара электронов образует двойную связь.
Кофермент НАД + принимает только один отрицательно заряженный ион гидрида, превращается в НАДН , а протон остается в растворе
удаляется
Восстановленная форма НАДН является неустойчивой, поскольку в пиридиновом цикле
исчезает ароматический секстет и единая пи-электронная система. Атом углерода в положении-4 имеет тетраэдрическое строение. Именно вновь присоединенный (в виде гидрида Н–) атом водорода (он выделен жирным шрифтом) затем удаляется при окислении восстановленной формы НАДН и передается следующему окислителю( это называется « молекулярная память» ) и до образования конечных продуктов обмена ( молочная кислота в анаэробных условиях или вода в аэробных условиях)
НАДН + Н+ + Х ——> НАД + + Х-Н