Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Государственный экзамен.doc
Скачиваний:
22
Добавлен:
04.05.2019
Размер:
13.2 Mб
Скачать

3. Правило Марковникова и его интерпретация. Реакция по аллильному положению.

В отличие от симметричных электрофилов (Hal2), галогеноводороды представляют собой несимметричные электрофильные реагенты. Присоединение любого несимметричного электрофила (HBr, ICl, H2O, Hg(OAc)2 и т. д.) к несимметричному алкену в принципе могло бы дать смесь двух альтернативных продуктов, однако на практике обычно образуется только один из них. В качестве примера рассмотрим присоединение бромистого водорода к пропилену.

Еще в 1870 г. Марковников сформулировал эмпирическое правило, согласно которому несимметричные алкены присоединяют НХ таким путем, что преимущественно образуется продукт, в котором водород присоединяется к наименее замещенному, а Х - к наиболее замещенному концу двойной связи.

Обычно правило Марковникова объясняют различием в стабильности двух альтернативных карбокатионов. Например, в приведенном выше примере нормальный н-пропильный катион значительно менее стабилен, чем изопропильный катион, и поэтому реакция идет по второму пути.

Правило Марковникова первоначально использовалось только для случаев присоединения НХ к углеводородным субстратам, но в принципе его можно распространить и на реакции других замещенных алкенов. Так, присоединение НCl к CF3CH=CH2 дает "анти-марковниковский" продукт CF3CH2CH2Cl. Этого и следовало ожидать, поскольку катион CF3CH+CH3 менее стабилен, чем катион CF3CH2CH2+ из-за сильного (-I)-эффекта CF3-группы. Преимущественно образуется катион CF3CH2CH2+ , но он тоже, хотя и в меньшей степени дестабилизирован индуктивным эффектом CF3-группы, вследствие чего присоединение HCl к трифторметилэтилену идет значительно медленнее, чем присоединение к незамещенному этилену.

По аналогичной причине катионы винилтриалкиламмония присоединяют HBr также против правила Марковникова:

Присоединение НХ к алкенам, имеющим сильные (-I) и (-M)-заместители, например, к акрилонитрилу или нитроэтилену также должно идти против правила Марковникова. Однако в этом случае двойная связь настолько сильно дезактивирована по отношению к электрофильным реагентам, что эти реакции идут лишь в очень жестких условиях. Хлористый винил СН2=СНСl всегда дает исключительно "марковниковские аддукты". Например, при его реакции с HCl образуется только 1,1-дихлорэтан (геминальный дихлорид) CH3CHCl2. Хлор, аналогично CF3-группе имеет сильный (-I)-эффект, и на первый взгляд, кажется, что по этой причине присоединение должно иметь антимарковниковскую ориентацию, т. к. катион +CH2CH2Cl должен быть более стабильным, чем катион СН3СН+Cl. Однако, в отличие от CF3-группы, хлор кроме (-I)-эффекта обладает также противодействующим ему (+М)-эффектом (т. к. имеет неподеленные пары). Опыт показывает, что величина мезомерного эффекта вполне достаточна, чтобы понизить энергию 1-хлорэтильного катиона ниже уровня энергии 2-хлорэтильного катиона, в котором +М-эффект не проявляется.

II. С позиций теории резонанса строение 1-хлорэтильного катиона может быть представлено следующим образом:

Тем не менее, присоединение к хлористому винилу происходит медленнее, чем к этилену в тех же условиях, т. е. по суммарному эффекту (-I > +M) хлор остается электроноакцепторным заместителем по сравнению с водородом, а 1-хлорэтильный катион менее стабилен, чем С2Н5+. Аналогичным образом реагируют с НХ и другие винилгалогениды.

Виниловые эфиры CH2=CHOR присоединяют НХ (X=Hal) по правилу Марковникова с гораздо большей скоростью, чем все перечисленные выше замещенные алкены. Это связано со значительным +М-эффектом RО-группы. В отличие от атома хлора, RО-группа по суммарному электронному эффекту (+М > -I) является сильным электронодонорным заместителем, эффективно стабилизирующим соседний карбокатионный центр. Строение карбокатиона в этом случае также может быть представлено в виде набора двух резонансных структур

Атака оксониевого катиона галогенид-анионом приводит к образованию -галогенэфиров типа СН3СН(Hal)OR.

Реакции по аллильному положению

Стабильность аллил-радикала

Рассмотрим строение аллил-радикала CH2=CHCH2. . Все атомы углерода в аллил-радикале находятся в sp2 -гибридном состоянии, а не спаренный электрон располагается на р-орбитали, которая параллельна р-орбиталям двойной связи. Электронная структура незамещенного аллил-радикала характеризуется полной симметрией и р-орбиталь центрального атома углерода в равной степени перекрывается с р-орбиталями обоих соседних атомов углерода и длина связи С12 равна длине связи С23. Другими словами, стабильность аллил-радикала обусловлена резонансной делокализацией не спаренного электрона по единой -электронной системе.

Радикальное присоединение бромистого водорода, катализируемое перекисями и родственные реакции

Присоединение бромистого водорода к алкенам резко отличается от присоединения остальных галогеноводородов - HF, HCl и HI. В зависимости от условий при присоединении HBr к несимметричным алкенам образуются продукты присоединения или в соответствии с правилом Марковникова, или против правила Марковникова. Было установлено, что при полном отсутствии кислорода или пероксидов гидробромирование алкенов строго подчиняется правилу Марковникова. Однако в присутствии кислорода или каталитических количеств пероксидов присоединение HBr осуществляется против правила Марковникова (анти-марковниковское присоединение). Наиболее эффективными инициаторами анти-марковниковского присоединения HBr к алкенам оказались пероксиды, такие как перекись бензоила (C6H5COO)2, трет-бутилгидропероксид (CH3)3COOH и др. Рациональное объяснение этого явления было дано Харашем (1933 г). Он показал, что механизм реакции изменяется с электрофильного на радикальный., что в свою очередь приводит к полному изменению региоселективности гидробромирования алкена.

Присоединение бромистого водорода, инициируемое кислородом или перекисями, осуществляется по цепному радикальному механизму. Инициирование радикальной цепи заключается в образовании атома брома, который вызывает развитие радикальной цепи.

Зарождение цепи

Развитие цепи

Образование радикала Br∙при зарождении цепи происходит в результате взаимодействия перекисного радикала или кислорода с бромистым водородом. С чисто энергетической точки зрения образование С6H5COOH и Br∙ гораздо выгоднее, чем образование С6H5COOBr и H∙ , поскольку энергия связи О-Н значительно превышает энергию связи О-Br и, следовательно, в радикальном процессе образование С6H5COOН и Br∙ предпочтительнее. Обе стадии развития цепи экзотермичны и характеризуются низкой энергией активации, что обеспечивает развитие цепного процесса. Атом брома присоединяется к концевому атому углерода алкена с образованием более замещенного вторичного радикала. Аналогично карбокатионам, вторичные алкильные радикалы стабильнее первичных. Поэтому на первой стадии развития цепи образуется только вторичный радикал RCH∙CH2Br, а не первичный радикал RCHBrСН2∙. В конечном итоге это приводит к анти-марковниковскому продукту радикального гидробромирования RCH2CH2Br.

Аномальное гидрогалогенирование, инициируемое перекисями, характерно для присоединения НBr, но не HCl, HI или HF. Энергия связи С-I настолько мала, что присоединение радикала I∙ к двойной связи в первой стадии развития цепи эндотермично и требует высокой энергии активации:

хотя вторая стадия развития цепи экзотермична

При радикальном присоединении HCl и особенно HF к двойной связи, напротив, вторая стадия развития цепи характеризуется поглощением тепла, поскольку энергия связи HCl очень высока (103,1 ккал/моль).

Цепные радикальные процессы осуществляются легко только в том случае, когда обе стадии развития цепи экзотермичны. Наличие эндотермичной стадии соответствует медленной реакции с быстрым обрывом цепи. Поэтому радикальное присоединение HF, HCl и HI к двойной связи не происходит.

Целый ряд других соединение с подходящей энергией связи могут присоединяться к двойной связи по радикальному механизму, подобному радикальному присоединению HBr к алкенам. Известны многочисленные примеры присоединения к алкенам сероводорода, тиолов, дисульфидов, четыреххлористого и четырехбромистого углерода, бромтрихлорметана:

CCl4 и CBr4 легко реагируют с алкенами в присутствии перекисей, инициирующих радикальные процессы, с образованием аддуктов состава 1:1.