Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Опорный конспект Магнетизм.doc
Скачиваний:
13
Добавлен:
03.05.2019
Размер:
1.57 Mб
Скачать

§ 13. Вихревое электрическое поле

В неподвижных проводниках возникновение индукционного тока обусловлено тем, что изменяющееся магнитное поле порождает вихревое электрическое поле. Силовые линии вихревого электрического поля замкнуты. Поэтому такое поле вызывает индукционный ток в замкнутом контуре.

В ихревое электрическое поле в отличии от электростатического не является потенциальным.

Вихревое электрическое поле может вызывать индукционные токи и в сплошных проводниках. Такие токи называются вихревыми или токами Фуко.

Таким образом, подводя итоги вышесказанного можно заключить.

Переменное магнитное поле вызывает появление индуцированного вихревого электрического поля. Это фундаментальное положение электродинамики установлено Максвеллом как обобщение закона электромагнитной индукции Фарадея.

Е сли к неподвижному замкнутому проводящему контуру приближается постоянный магнит, то в контуре возникает индукционный ток . Причиной, вызывающей упорядоченное перемещение зарядов является индуцированное электрическое поле, в котором на заряды проводящего контура действуют силы, приводящие к их разделению и появлению ЭДС индукции.

Свойства индуцированного электрического поля:

  1. Индуцированное электрическое поле не является кулоновским. Оно создается не зарядами, распределенными в пространстве, а переменным магнитным полем.

  2. Индуцированное электрическое поле подобно магнитному полю является вихревым и не потенциальным полем. Работа , совершаемая в этом поле при перемещении единичного положительного заряда по замкнутой цепи не равна нулю и численно равна ЭДС индукции в замкнутом проводящем контуре, находящемся в переменном магнитном поле.

Вихревые токи появляющиеся в сердечнике трансформатора или в якоре электродвигателя вредны, так как они вызывают большие потери электрической энергии и могут привести к перегреву, что может быть причиной аварии. Для борьбы с вредным влиянием вихревых токов сердечники трансформаторов и якоря электродвигателей набирают из отдельных пластин, изолированных друг от друга, чтобы увеличить сопротивление сердечника в направлении вихревых токов.

Появление ферритов – магнитных материалов с большим электрическим сопротивлением, сделало возможным изготовление сплошных сердечников.

В ихревые токи имеют так же и полезные применения.

Приведем пример.

Между полюсами магнита (или электромагнита) расположен медный маятник, прикрепленный к стрелке прибора. При колебаниях стрелки маятник пересекает линии индукции магнитного поля, и в нём возникают вихревые токи. Согласно правилу Ленца вихревые токи, возникающие в маятнике, имеют такое направление, что взаимодействие их магнитных полей с полем магнита препятствует движению маятника. Такая система часто применяется для быстрого электромагнитного гашения или демпфирования механических колебаний различных приборов.

Быстропеременные магнитные поля и вызванные ими вихревые токи применяются в индукционных печах для термической обработки и плавки металлов. Такая печь представляет собой катушку, питаемую высокочастотными токами большой силы. Если поместить внутри катушки проводящее тело в нем возникнут интенсивные вихревые токи, которые могут разогреть тело до плавления. Подобным образом осуществляется плавление металлов в вакууме что позволяет получать металлы очень высокой чистоты.

Вихревые токи, возникающие в проводах, по которым текут переменные токи, ослабляют их внутри провода или вблизи поверхности. Это явление называется скин-эффектом или поверхностным эффектом [skin (англ.) – кожа]. Из-за скин-эффекта внутренняя часть проводника в высокочастотных цепях оказывается бесполезной, и поэтому проводники изготавливают в виде трубок.

Вихревые индукционные токи высокой частоты используются и для поверхностной закалки деталей машин. В мощном переменном поле поверхностные слои металла разогреваются очень быстро. Основная же масса металла остается холодной. Затем производится быстрое охлаждение металла, например погружением в воду или масло. Закаленная деталь имеет твердую поверхность, но не становится хрупкой, так как остальной металл не утратил свою вязкость. Изменяя частоту переменного магнитного поля можно производить закалку на любую глубину сечения металла.