
- •8.1. Краткий обзор существующих работ
- •8.2. Построение обобщенного дифференциального уравнения неустановившейся фильтрации однородной жидкости и газа в пористой среде при изотермическом процессе
- •(Источников) в пространстве
- •8.3. Приток к несовершенной линии стоков (скважине) в ограниченном пласте при наличии подошвенной воды
- •Прямоугольной формы за счет напора подошвенной воды
- •9. Методы расчета фильтрационных сопротивлений. Табулирование сложных функций
- •9.1. Краткий обзор существующих работ; постановка задач
- •9.2. Методы расчета фильтрационных сопротивлений при установившемся притоке жидкости и реального газа к несовершенной скважине. Табулирование функций
- •Ограниченном однородно-анизотропном пласте
- •Т абулированные значения функции
- •Экраном и относительным вскрытия пласта
- •Обусловленного нелинейным законом фильтрации
- •С1 от относительного вскрытия пласта при параметрах ρ0 и
- •9.3. Методика расчета фильтрационных сопротивлений при неустановившемся осесимметричном притоке жидкости (газа) к несовершенной скважине в неограниченном пласте.
- •При параметре
- •9.4. Методика расчета фильтрационных сопротивлений при неустановившемся притоке жидкости к несовершенной скважине в ограниченном пласте по линейному закону
- •9.5. Методика расчета фильтрационных сопротивлений, обусловленных перфорацией колонны
- •Пласта æ* при фиксированной глубине l0 пулевого канала (см)
- •Канала при фиксированном значении анизотропии пласта æ*
- •10. Интерпретация результатов исследования гидродинамически несовершенных скважин при нестационарной фильтрации
- •10.1. Общая характеристика прискважинной зоны пласта
- •10.2. Основы дифференциального и интегрального методов обработки кривых восстановления давления в пласте
- •10.3. Влияние учета несовершенства скважин на точность определения параметров пласта при интерпретации кривых восстановления давления
- •10.4. Влияние изменения проницаемости на характеристики пласта
- •Исходные данные для обработки квд
- •10.5. Определение радиуса кольцевой неоднородности по квд при дренировании однородно-анизотропного пласта несовершенной скважиной
- •Неоднородностью
- •10.6. Интерпретация кольцевой неоднородности пласта и скин-эффект в условиях плоско-радиального потока
- •Литература к гл. 8-10
- •11. Моделирование процессов статического конусообразования при разработке нефтяных, газовых и нефтегазовых залежей
- •11.1. Сущность проблемы конусообразования
- •11.2. Моделирование процесса статического конусообразования
- •Статическом равновесии границы раздела
- •11.3. Методы расчета предельных безводных и безгазовых дебитов несовершенных скважин, дренирующих нефтегазовые залежи с подошвенной водой
- •При безнапорном притоке к несовершенной скважине
- •Воды в условиях напорного притока к несовершенной скважине
- •Зависимости от расположения интервала вскрытия пласта
- •11.4. Расчет предельных безводных дебитов несовершенных сважин и депрессий в газовых залежах с подошвенной водой при линейном законе фильтрации
- •Результаты расчетов погрешности d0 по формуле (11.49)
- •11.5. Решение задач конусообразования по двухзонной схеме притока
- •Определение ординаты x0 и функции е0(x0, r, )
- •Литература к гл. 11
- •12. Моделирование процессов динамического конусообразования при разработкЕ водонефтяных и газонефтяных залежЕй
- •12.1. Краткий обзор теоретических работ по конусообразованию
- •12.2. Упрощенные и строгие методы расчета времени безводной эксплуатации скважин с подошвенной водой
- •Скважины t от относительного вскрытия пласта
- •12.3. Методика прогнозирования продвижения границы раздела и нефтеотдачи за безводный период по удельному объему дренирования
- •12.4. Уточненная методика расчета безводного периода эксплуатации несовершенной скважины при опережающей разработке нефтяной оторочки
- •12.5. Уточненная методика расчета времени прорыва нефти из оторочки к забою газовой скважины при опережающей разработке газовой шапки
- •12.6. Уточненная методика расчета времени прорыва газа из газовой шапки к забою несовершенной скважнны, дренирующей нефтяную оторочку
- •Залежи несовершенной скважиной
- •Литература к гл. 12
- •13. Установившийся и неустановившийся приток жидкости и газа к вертикальным трещинам грп и горизонтальным стволам
- •13.1. Установившийся приток к вертикальным трещинам и горизонтальным стволам скважин
- •Скважине и несовершенной щели в полосообразном пласте
- •13.2. Наиболее известные формулы дебита горизонтальных стволов нефтяных скважин при установившемся притоке
- •13.3. Определение дебита горизонтального ствола скважины по методу эквивалентных фильтрационных сопротивлений
- •Горизонтальной скважины по сравнению с дебитом вертикальной
- •13.4. Определение оптимального местоположения и дебита горизонтального ствола скважины, дренирующего нефтегазовую залежь с подошвенной водой
- •Залежи с подошвенной водой
- •Погрешность формул (13.4.1) и (13.4.2)
- •Определение безразмерного дебита 10 скважины-трещиы
- •13.5. К обоснованию оптимальной сетки горизонтальных скважин и сравнительная эффективность их работы вертикальными трещинами и скважинами
- •Расположением горизонтальной скважины
- •Результаты расчета оптимальных размеров а и b сетки размещения горизонтальных скважин и вертикальных трещин и их эффективности при исходных параметрах a, l
- •13.6. Неустановившийся приток жидкости и газа к несовершенной галерее (вертикальной трещине грп) и горизонтальному стволу скважины по двухзонной схеме
- •4.Приток к горизонтальному стволу
- •Трещины q0 от степени вскрытия пласта
- •5. Приток реального газа к вертикальной трещине грп и горизонтальному стволу по нелинейному закону фильтрации
- •13.7. Установившийся и неустановившийся приток жидкости к многозабойным горизонтальным скважинам
- •13.7.1. Некоторые типовые профили многозабойных скважин
- •Разработке нефтегазовых залежей
- •Воды горизонтальными стволами в плоскости (X, z)
- •(Y, z) при одновременно–раздельном отборе воды и нефти
- •Линиями нагнетания
- •13.8. Решение некоторых гидродинамических задач притока жидкости к горизонтальным стволам скважин на основе теории функций комплексного переменного.
- •Продуктивном блоке
- •Результаты расчета фукнкции f(ρ,
- •Литература к гл. 13
- •1.Чарный и.А. Подземная гидромеханика. Гтти, 1948.
- •Результаты расчета добавочных фильтрационных сопротивлений при
- •Табулированные значения функции фильтрационного сопротивления по формуле (9.3.4)
- •Значение безразмерных плотностей по формулам (11.25) и (11.26)
Расположением горизонтальной скважины
Поскольку
ни на подошве, ни на кровле граничные
условия не задаются, то авторы [31], строго
говоря, решают плоскую задачу в режиме
истощения залежи, принимая единичную
толщину пласта (
)
в качестве вертикальной трещины, а в
последствии при определении дебита
трещины и горизонтальной скважины
учитывают как толщину пласта, так и
конвергенцию вертикального потока.
В уравнении (13.5.1) приняты следующие обозначения: Q — дебит скважины, m – коэффициент вязкости, K – проницаемость пласта по горизонтали, А=аb – площадь дренирования, DРс=Р0–Рс – депрессия на пласт, Р0 – пластовое давление, Рс – среднее давление на контуре скважины.
Приводя уравнение (13.5.1) к безразмерному виду и заменяя его системой конечно-разностных уравнений с использованием пентадиагональной матрицы блока и способа решения, изложенного в книге А. Сеттери и К. Азиза [32], Р. Супрунович и Р. Батлер получили следующую приближенную формулу для расчета наибольшего дебита горизонтального ствола скважины и вертикальной трещины ГРП единичной высоты, соответствующую оптимальным размерам площади дренирования в форме прямоугольника
,
(13.5.2)
где
– безразмерный
параметр,
определяемый асимптотическим выражением
.
(13.5.3)
При заданных параметрах А и L оптимальные размеры прямоугольника определяются по формулам:
.
(13.5.4)
Итак, в двухмерном пласте горизонтальный ствол рассматривается как линия стока, а в трехмерном пространстве как вертикальная трещина. При этом предполагается, что форма сетки размещения горизонтального ствола остается той же самой.
В соответствии с формулой Дюпюи параметр Р* для вертикальной скважины через площадь дренирования А выразится следующей формулой
,
(13.5.5)
а эффективность вертикальной трещины определится кратностью отношения
.
(13.5.6)
Приток к горизонтальной скважине в трехмерном пространстве подобен притоку к вертикальной трещине, но линии тока при этом должны конвергировать к поверхности скважины, вызывая дополнительное падение давления на преодоление фильтрационного сопротивления, как для вертикальной трещины. Чтобы избежать трудности при непосредственном решении этой задачи численным способом, авторы [31] использовали известную аппроксимацию, предложенную Ю.П. Борисовым. В соответствии с этим было найдено выражение для падения давления за счет вертикальной конвергенции
.
(13.5.7)
Теперь дебит горизонтальной скважины будет определяться формулой
.
(13.5.8)
Для однородно-анизотропного пласта в формулу (13.5.7) надо ввести коэффициент анизотропии æ*, т. е. вместо h0 принять æ*h0.
Эффективность горизонтального ствола скважины по отношению к вертикальной скважине составит
.
(13.5.9)
Эффективность вертикальной трещины по отношению к горизонтальной скважине выражается соотношением
.
(13.5.10)
Пример. Приняв исходные параметры: æ*=3,3; h0=15 м; площади дренирования А=8; 16; 32 и 64 га; длину горизонтальной скважины L=500 и 200 м, рассчитать оптимальные размеры а и b сетки размещения горизонтальных скважин и сравнительную их эффективность пэф.
Расчеты, произведенные по формулам (13.5.3)-(13.5.7), (13.5.10) и (13.5.11), представлены в таблице 13.5.
Таблица 13.5