Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Подземная гидромеханика 2ч.doc
Скачиваний:
91
Добавлен:
03.05.2019
Размер:
12.25 Mб
Скачать

11.4. Расчет предельных безводных дебитов несовершенных сважин и депрессий в газовых залежах с подошвенной водой при линейном законе фильтрации

Движение газа предполагается установившимся, изотермическим и следующим закону Дарси. При эксплуатации залежи, вследствие неравномерного распределения давления на поверхности раздела газ-вода, образуются конуса подошвенной воды ниже забоя скважин (см. рис. 11.2). Возникает интересная для газопромысловой практики задача определения предельных безводных дебитов газа и предельных депрессий, при превышении которых в скважины прорывается подошвенная вода. Такая же необходимость в определении предельных безводных дебитов газа возникает и при эксплуатации подземных хранилищ газа в водоносных пластах при наличии подошвенной воды.

Если принять основное допущение приближенной теории устойчивых конусов [2], то расчет верхнего значения предельного безводного дебита можно выполнить, используя решение задачи о напорном притоке газа к несовершенной скважине. В такой постановке исследование этой задачи было выполнено Б.Б. Лапуком и С.Н. Кружковым [29] на основе приближенного решения Маскета [1] для притока жидкости к несовершенной скважине. При этом показано, что предельный безводный дебит газа, в отличие от предельного безводного дебита нефти, является функцией трех параметров r, и и решение дается графическое в виде семейства кривых для фиксированных значений параметра ρ0>1 Расчеты могут быть произведены по формулам и графикам для несжимаемой жидкости с погрешностью не более 10% [29].

Здесь рассматривается, та же задача, основанная на более эффективном решении 1.3 (17) [9] о напорном притоке к несовершенной скважине по линейному закону в широком диапазоне параметра r и не требующая дополнительного графического построения в отличие от [29]. Задача сводится к решению для притока несжимаемой жидкости с некоторым поправочным коэффициентом δ, что позволяет использовать уже имеющиеся графики для расчета предельных безводных дебитов. Дается также и оценка коэффициента δ.

Используем решение 1.3 (17) [9], которое для притока газа принимает вид

, (11.38)

где

Р0 – средневзвешенное начальное давление.

Условие установившегося безводного притока газа, когда водяной конус неподвижен, определяется из закона Паскаля

. (11.39)

Пусть предельная высота конуса воды определяется ординатой x=x0. Тогда, решая совместно (11.38) и (11.39), после некоторых преобразований получаем безразмерный предельный дебит для газовой скважины

; (11.40)

(11.41)

Сравнивая формулы (11.40) и (11.1), находим:

; (11.42)

. (11.43)

Формула (11.43) представляет безразмерный предельный безводный дебит по нефти.

Таким образом отпадает необходимость находить x0 и соответствующую ей функцию в формуле (11.40), связанную с распределением потенциала в пласте, т. к. они уже рассчитаны для притока несжимаемой жидкости (см табл. 11.1, рис. 11.3). А потому определение безводных дебитов в газовых залежах не представляет принципиальных трудностей. Формулу (11.42) можно записать в виде

. (11.44)

При достаточно большом значении , формула (11.44) упрощается

(11.45)

Выражение для размерного дебита с учетом (11.41) и (11.44) запишется формулой

, (11.46)

где

(11.47)

При достаточно большом значении формула (11.46) упрощается

. (11.48)

Итак, рассчитать предельный безводный дебит газа для газовой залежи можно по безразмерным графикам для предельного дебита нефти (см. табл. 11.1 и рис. 11.3). Из этой же таблицы определяются x0 и .

Представляется интересным оценить погрешность формулы (11.45) или (11.48). Нетрудно видеть, что их погрешность оценивается соотношением

(11.49)

Покажем минимальную и максимальную погрешность этих формул. За минимальную погрешность примем d% при r0=0,05 и =0,8, а за максимальную погрешность примем d% при r³100 и =0,1. Для заданных и промежуточных параметров r0 и значения предельной ординаты вершины конуса определялись из табл. 11.1. Результаты расчетов погрешности d% приведены в табл. 11.4.

Таблица 11.4