
- •1.Основные химические законы и понятия.
- •2. Строение атомов. Модель атома по Резерфорду, по Бору.
- •3.Волновые свойства электрона.Принцип неопределенности Гейзенберга.
- •4. Квантовые числа. Главное, орбитальное, магнитное, спиновое числа.
- •5.Принцип Паули. Принцип наименьшей энергии. Правило Гунда. Порядок заполнения атомных орбиталей электронами
- •6. Периодический закон д.И.Менделеева. Структура периодической системы.
- •8.Химическая связь и валентность
- •9. Ковалентная связь. Свойства ковалентной связи. Понятие о теории гибридизации.
- •10.Ионная связь. Типы ковалентных молекул.
- •11.Межмолекулярные взаимодействия, их типы, характеристика.
- •12. Донорно-акцепторная связь. Водородная связь.
- •13. Металлическая связь. Структура твердых тел.
- •14.Элементы химической термодинамики. Первое начало термодинамики.
- •15.Внутренняя энергия и энтальпия. Термохимические уравнения. Теплоты образования и разложения веществ. Закон Гесса и следствие из него.
- •16. Элементы второго начала термодинамики. Энтропия.
- •17.Энергия Гиббса. Направленность химических процессов.
- •18. Скорость гомогенных реакций. Закон действия масс. Константа скорости реакции.
- •19. Влияние температуры на скорость гомогенных реакций. Химическое равновесие в гомогенных системах. Принцип Ле-Шателье.
- •20. Цепные реакции. Гомогенный катализ.
- •21. Скорость гетерогенных реакций. Гетерогенный катализ
- •22.Общая характеристика растворов. Способы выражения концентрации растворов. Растворимость газов, твердых тел, жидкостей в жидкостях
- •23.Первый и второй закон Рауля.Осмотическое давление. Закон Ван-Гоффа.
- •24. Водные растворы электролитов. Особенности растворов кислот, солей, оснований. Теория электролитической диссоциации.
- •25. Степень диссоциации. Виды электролитов. Константа диссоциации слабых электролитов.
- •26. Диссоциация воды. Водородный показатель
- •27. Электродные потенциалы. Механизм возникновения. Зависимость потенциалов от природы электролитов и растворителей.
- •28. Устройство и назначение водородного электрода. Измерение стандартных электродных потенциалов металлов. Ряд напряжений металлов.
- •29. Теория гальванического элементов.
- •Избыточные электроны перейдут с электрода
- •30. Уравнение Нернста. Концентрационные гальванические элементы. Поляризация и деполяризация. Элемент Лекланше.
- •31. Электролиз. Процессы, протекающие на аноде и катоде. Закон Фарадея
- •32. Электролиз растворов с нерастворимыми электродами. Электролиз расплавов.
- •33.Электролиз растворов с растворимым анодом, его применение: гальваностегия, гальванопластика, электролитическое рафинирование.
- •34. Аккумуляторы. Устройство, принцип действия свинцового аккумулятора.
- •35. Топливные элементы.
- •36. Коррозия металлов. Виды коррозионных разрушений. Электрохимическая коррозия.
- •37. Химическая коррозия. Электрокоррозия. Скорость коррозии.
- •38. Методы защиты металлов от коррозии
- •39. Классификация металлов. Кристаллическая структура, физические свойства металлов.
- •40. Получение металлов из руд.Способы получения металлов высокой чистоты.
- •2.Термическое разложение йодидов металлов.
- •41. Общие химические свойства металлов.
- •3.Взаимодействие с растворами кислот.
- •4.Взаимодействие с концентрированной серной кислотой.
- •5. Взаимодействие с азотной кислотой
- •6. Взаимодействие со смесями кислот.
- •42.Легкие конструкционные материалы. Алюминей. Свойства, получение, применение в технике, важнейшие соединения.
- •43 Медь. Свойства, получение, применение в технике, важнейшие соединения.
- •44. Олово.Железо. Свойства, получение, применение, важнейшие соединения.
- •45.Высокомолекулярные соединения, их виды, способы получения вмс.
- •46. Получение вмв с помощью поликонденсации
- •47. Применение полимеров. Основные полимеры,получаемые полимеризацией.
- •48. Основные полимеры, получаемые поликонденсацией. Фенолоформальдегидные смолы, полиамиды, полиэфирные смолы.
4. Квантовые числа. Главное, орбитальное, магнитное, спиновое числа.
Основная характеристика, определяющая движение электрона в поле ядра,— это его энергия. Энергия электрона, как и энергия частицы светового потока — фотона, принимает не любые, а лишь определенные дискретные, прерывные или, как говорят, квантующиеся значения.
Движущийся электрон обладает тремя степенями свободы перемещения в пространстве (соответственно трем координатным осям) и одной дополнительной степенью свободы, обусловленной наличием у электрона собственного механического и магнитного моментов, которые учитывают вращение электрона вокруг своей оси. Следовательно, для полной энергетической характеристики состояния электрона в атоме необходимо и достаточно иметь четыре параметра. Эти параметры получили название квантовых чисел. Квантовые числа, так же как и энергия электрона, могут приникать не все, а лишь определенные значения. Соседние значения квантовых чисел различаются на единицу.
Главное квантовое число n характеризует общий запас энергии электрона или его энергетический уровень. Главное квантовое число может принимать значения целых чисел от 1 до ∞. Для электрона, находящегося в поле ядра главное квантовое число может принимать значения от 1 до 7 (соответственно номеру периода в периодической системе, в котором находится элемент). Энергетические уровни обозначаются или цифрами в соответствии со значениями главного квантового числа, или буквами:
числа, или буквами:
п |
1 |
2 |
3 |
4 |
5 |
6 |
7 |
Обозначение уровня |
K |
L |
M |
N |
O |
P |
Q |
Если, например, n=4, то электрон, находится на четвертом, считая от ядра атома, энергетическом уровне, или на N уровне.
Орбитальное квантовое числа l, которое иногда называют побочным квантовым числом, характеризует различное энергетическое состояние электрона данного уровня. Тонкая структура спектральных линий говорит о том, что электроны каждого энергетического уровня группируются в подуровни. Орбитальное квантовое число связано с моментом количества движения электрона при его движении относительно ядра атома. Орбитальное квантовое число определяет также форму электронного облака Квантовое число l может принимать все целочисленные значения от 0 до (п-1). Например, при n=4, l=0, 1, 2, 3. Каждому значению l соответствует определенный подуровень. Для подуровней применяются буквенные обозначения. Так, при l=0, 1, 2, 3 электроны находятся соответственно на s-, p-, d-, f- подуровнях. Электроны различных подуровней соответственно называют s-, p-, d-, f - электронами. Возможное число подуровней для каждого энергетического уровня равно номеру этого уровня, но не превышает четырех. Первый энергетический уровень (п=1) состоит из одного s-подуровня, второй (п=2), третий (п=3) и четвертый (п=4) энергетические уровни состоят соответственно из двух (s, p), трех (s, p, d) и четырех (s, p, d, f) подуровней. Больше четырех подуровней не может быть, так как значения l=0, 1, 2, 3 описываю электроны атомов всех 104 известных сейчас элементов.
Если l=0 (s-электроны), то момент количества движения электрона относительно ядра атома равен нулю. Это может быть только когда электрон поступательно движется не вокруг ядра, а от ядра к периферии и обратно. Электронное облако s-электрона имеет форму шара.
Магнитное квантовое число - c моментом количества движения электрона связан и его магнитный момент. Магнитное квантовое число характеризует магнитный момент электрона. магнитное квантовое число характеризует магнитный момент электрона и указывает на ориентацию электронного облака относительного избранного направления или относительно направления магнитного поля. Магнитное квантовое число может принимать любые целые положительные и отрицательные значения, включая и ноль в пределах от – l до + l. Например, если l=2, то имеет 2 l+1=5 значений (-2, -1, 0, +1, +2). При l=3 число значений равно 2 l+1=7 (-3, -2, -1, 0, +1, +2, +3). Число значений магнитного квантового числа , которое равно 2 l+1, - это число энергетических состояний, в которых могут находиться электроны данного подуровня. Таким образом, s-электроны имеют лишь одно состояние (2 l+1=1), p-электроны – 3 состояния (2 l+1=3), d-, f-электроны – соответственно 5 и 7 состояний. Энергетические состояния принято обозначать схематически энергетическими ячейками, изображая их в виде прямоугольников, а электроны в виде стрелок в этих ячейках.
Спиновое квантовое число - характеризует внутреннее движение электрона — спин. Оно связано с собственным магнитным моментом электрона, обусловленным его движением вокруг своей оси. Это квантовое число может принимать только два значения: + 1/2 и —1/2, в зависимости от того, параллельно или антипараллельно магнитному полю, обусловленному движением электрона вокруг ядра, ориентируется магнитное поле спина электрона.
Два электрона (пара) с одинаковыми значениями квантовых чисел: n, I, , но с противоположно направленными спинами (↑ ↓) называются спаренными или неподеленной парой электронов. Электроны с ненасыщенными спинами (↑↑) называются неспаренными.