- •1.Основные химические законы и понятия.
- •2. Строение атомов. Модель атома по Резерфорду, по Бору.
- •3.Волновые свойства электрона.Принцип неопределенности Гейзенберга.
- •4. Квантовые числа. Главное, орбитальное, магнитное, спиновое числа.
- •5.Принцип Паули. Принцип наименьшей энергии. Правило Гунда. Порядок заполнения атомных орбиталей электронами
- •6. Периодический закон д.И.Менделеева. Структура периодической системы.
- •8.Химическая связь и валентность
- •9. Ковалентная связь. Свойства ковалентной связи. Понятие о теории гибридизации.
- •10.Ионная связь. Типы ковалентных молекул.
- •11.Межмолекулярные взаимодействия, их типы, характеристика.
- •12. Донорно-акцепторная связь. Водородная связь.
- •13. Металлическая связь. Структура твердых тел.
- •14.Элементы химической термодинамики. Первое начало термодинамики.
- •15.Внутренняя энергия и энтальпия. Термохимические уравнения. Теплоты образования и разложения веществ. Закон Гесса и следствие из него.
- •16. Элементы второго начала термодинамики. Энтропия.
- •17.Энергия Гиббса. Направленность химических процессов.
- •18. Скорость гомогенных реакций. Закон действия масс. Константа скорости реакции.
- •19. Влияние температуры на скорость гомогенных реакций. Химическое равновесие в гомогенных системах. Принцип Ле-Шателье.
- •20. Цепные реакции. Гомогенный катализ.
- •21. Скорость гетерогенных реакций. Гетерогенный катализ
- •22.Общая характеристика растворов. Способы выражения концентрации растворов. Растворимость газов, твердых тел, жидкостей в жидкостях
- •23.Первый и второй закон Рауля.Осмотическое давление. Закон Ван-Гоффа.
- •24. Водные растворы электролитов. Особенности растворов кислот, солей, оснований. Теория электролитической диссоциации.
- •25. Степень диссоциации. Виды электролитов. Константа диссоциации слабых электролитов.
- •26. Диссоциация воды. Водородный показатель
- •27. Электродные потенциалы. Механизм возникновения. Зависимость потенциалов от природы электролитов и растворителей.
- •28. Устройство и назначение водородного электрода. Измерение стандартных электродных потенциалов металлов. Ряд напряжений металлов.
- •29. Теория гальванического элементов.
- •Избыточные электроны перейдут с электрода
- •30. Уравнение Нернста. Концентрационные гальванические элементы. Поляризация и деполяризация. Элемент Лекланше.
- •31. Электролиз. Процессы, протекающие на аноде и катоде. Закон Фарадея
- •32. Электролиз растворов с нерастворимыми электродами. Электролиз расплавов.
- •33.Электролиз растворов с растворимым анодом, его применение: гальваностегия, гальванопластика, электролитическое рафинирование.
- •34. Аккумуляторы. Устройство, принцип действия свинцового аккумулятора.
- •35. Топливные элементы.
- •36. Коррозия металлов. Виды коррозионных разрушений. Электрохимическая коррозия.
- •37. Химическая коррозия. Электрокоррозия. Скорость коррозии.
- •38. Методы защиты металлов от коррозии
- •39. Классификация металлов. Кристаллическая структура, физические свойства металлов.
- •40. Получение металлов из руд.Способы получения металлов высокой чистоты.
- •2.Термическое разложение йодидов металлов.
- •41. Общие химические свойства металлов.
- •3.Взаимодействие с растворами кислот.
- •4.Взаимодействие с концентрированной серной кислотой.
- •5. Взаимодействие с азотной кислотой
- •6. Взаимодействие со смесями кислот.
- •42.Легкие конструкционные материалы. Алюминей. Свойства, получение, применение в технике, важнейшие соединения.
- •43 Медь. Свойства, получение, применение в технике, важнейшие соединения.
- •44. Олово.Железо. Свойства, получение, применение, важнейшие соединения.
- •45.Высокомолекулярные соединения, их виды, способы получения вмс.
- •46. Получение вмв с помощью поликонденсации
- •47. Применение полимеров. Основные полимеры,получаемые полимеризацией.
- •48. Основные полимеры, получаемые поликонденсацией. Фенолоформальдегидные смолы, полиамиды, полиэфирные смолы.
24. Водные растворы электролитов. Особенности растворов кислот, солей, оснований. Теория электролитической диссоциации.
Электролиты. Известно, что существуют две основные причины прохождения электрического тока через проводники: либо за счет движения электронов в электрическом поле, либо за счет движения ионов. Электронная проводимость присуща, прежде всего, металлам.
Ионная проводимость присуща многим химическим соединениям, обладающим ионным строением, например солям в твердом или расплавленном состояниях, а также многим водным и неводным растворам. В связи с этим все вещества принято условно делить по их поведению в растворах на две категории: а) вещества, растворы которых обладают ионной проводимостью (электролиты); б) вещества, растворы которых не обладают ионной проводимостью (неэлектролиты). К электролитам относится большинство неорганических кислот, оснований и солей. К неэлектролитам относятся многие органические соединения, например спирты, углеводы.
Электролитическая диссоциация. Кроме хорошей электропроводности, растворы электролитов обладают более низкими значениями давления пара растворителя и температуры плавления и более высокими температурами кипения по сравнению с соответствующими значениями для чистого растворителя или для раствора неэлектролита в этом же растворителе. Для объяснения этих свойств шведский ученый С. Аррениус в 1887 г. предложил теорию электролитической диссоциации.
Под электролитической диссоциацией понимается распад молекул электролита в растворе с образованием положительно и отрицательно заряженных ионов — катионов и анионов.
Процесс диссоциации во всех случаях является обратимым, поэтому при написании уравнений реакции диссоциации необходимо применять знак обратимости « . Различные электролиты, согласно теории Аррениуса, диссоциируют на ионы в различной степени. Полнота распада зависит от природы электролита, его концентрации, природы растворителя, температуры.
Степень диссоциации. Одним из важнейших понятий теории электролитической диссоциации Аррениуса является понятие о степени диссоциации.
Степенью диссоциации а называется отношение числа молекул, распавшихся на ионы (n'), к общему числу растворенных молекул (п):
Кислотой называется соединение, образующее при диссоциации в водном растворе из положительных ионов только ионы водорода Н+. В соответствии с этими определениями к кислотам относятся, например, НСl, H2SO4, HNO3, H2S. Числом ионов водорода, образуемых каждой молекулой кислоты при диссоциации, определяется заряд кислотного остатка (аниона). Соляная и азотная кислоты образуют только однозарядные кислотные остатки (Сl- ,NО3-); молекула серной кислоты (Н2SO4 может образовать два кислотных остатка: однозарядный (НSO4-) и двухзарядный (SO42-); молекула фосфорной кислоты может дать три кислотных остатка: однозарядный, двухзарядный и трехзарядный (Н2РО4-, НРО42- и РО43-).
Различают кислородные и бескислородные кислоты. Как показывает само название, первые содержат кислород (например Н2SO4, НNO3, Н3РО4), вторые его не содержат (например, НСl, НВr, НI, H2S).
Названия кислородных кислот производятся от названия неметалла с прибавлением окончаний -ная, -вая, если степень окисления его соответствует номеру группы. По мере понижения степени окисления суффиксы меняются в следующем порядке: -оватая, -истая, -оватистая.
Если элемент в одной и той же степени окисления образует несколько кислородсодержащих кислот, то к названию кислоты с меньшим содержанием кислородных атомов добавляется префикс “мета”, при наибольшем числе — префикс “орто”.
Названия бескислородных кислот производятся от названия неметалла с окончанием -о и прибавлением слова водородная.
Cоли. Солями называются соединения, образующие при диссоциации в водном растворе положительно заряженные ионы металлов и отрицательно заряженные ионы кислотных остатков, а иногда, кроме них, ионы водорода и гидроксид-ионы. В соответствии с данным определением соли делятся на средние (Na2SO4), кислые (NaHSO4) и основные (Mg(OH)Cl).
Гидролиз солей. Реакция чистой воды является нейтральной (рН = 7). Водные растворы кислот и оснований имеют соответственно кислую (рН < 7) и щелочную (рН > 7) реакцию. Практика, однако, показывает, что не только кислоты и основания, но и соли могут иметь щелочную или кислую реакцию — причиной этого является гидролиз солей.
Взаимодействие солей с водой, в результате которого образуются кислота (или кислая соль) и основание (или основная соль), называется гидролизом солей.
Причиной гидролиза является электролитическая диссоциация соответствующих солей и воды. Вода незначительно диссоциирует на ионы Н+ и ОН- , но в процессе гидролиза один или оба из этих ионов могут связываться ионами, образующимися при диссоциации соли, в малодиссоциированные, летучие или труднорастворимые вещества. Рассмотрим гидролиз солей следующих основных типов: 1. Соли сильного основания и сильной кислоты, при растворении в воде (например, NaCI, CaCl2, К2SO4) не гидролизуются, и раствор соли имеет нейтральную реакцию.
2. Соли сильного основания и слабой кислоты, например КСlO, Na2CO3, СН3СООNа, NaCN, Na2S, К2SiO3
Основанием называется соединение, образующее при диссоциации в водном растворе из отрицательных ионов только гидроксид-ионы ОН- . В соответствии с этими определениями к основаниям относятся, например, NaOH, Са(ОН)2, NH4OH.
Все кислоты в водных растворах диссоциируют на ионы водорода и ионы кислотного остатка.
Полная диссоциация: H2SO4 =2H+ + SO42-
Ступенчатая диссоциация: H2SO4 = H+ + HSO41-
HSO41- =H+ + SO42-
Основания в водных растворах диссоциируют на гидроксид-ионы и ионы металла.
Полная диссоциация: Ba(OH)2 = Ba2+ + 2OH1-
Ступенчатая диссоциация: Ba(OH)2 = BaOH+ + OH1-
BaOH+ = Ba2+ + OH1-
Средние соли диссоциируют в водных растворах на ионы металла и ионы кислотного остатка: CaCl2 = Ca2+ + 2Cl1-
Al2(SO4)3 = 2Al3+ + 3SO42-
Кислые соли диссоциируют на ионы металла, ионы водорода и ионы кислотного остатка: NaHSO4 = Na+ + H+ + SO42-
Теория электролитической диссоциации ( С. Аррениус, 1887г. )
1. При растворении в воде (или расплавлении) электролиты распадаются на положительно и отрицательно заряженные ионы (подвергаются электролитической диссоциации).
2. Под действием электрического тока катионы (+) двигаются к катоду (-), а анионы (-) – к аноду (+).
3. Электролитическая диссоциация - процесс обратимый (обратная реакция называется моляризацией).
4. Степень электролитической диссоциации (a) зависит от природы электролита и растворителя, температуры и концентрации. Она показывает отношение числа молекул, распавшихся на ионы (n) к общему числу молекул, введенных в раствор (N).
a = n / N 0<a<1