- •1.Графики и свойства основных элементарных функций
- •2.Предел функции
- •3.Основные теоремы о пределах.Асимптоды графика функций
- •4 Непрерывность функции в точке и на интервале
- •5 Точки разрыва первого и второго рода.
- •6. Производная и дифференциал
- •7.Основные теоремы дифференциального исчисления.
- •8.Функции нескольких переменных и их непрерывность.
- •9.Производные функций нескольких переменных.
- •10.Дифференциалы функций нескольких переменных.
- •11.Поиск экстремума функции.
- •12.Поиск экстремума функции двух переменных.
- •13.Неопределенный интеграл,основные теоремы
- •Свойства неопределенного интеграла:
- •14.Определенный интеграл,основные теоремы
- •16.Прямая линия на плоскости.
- •17.Эллипс:определение и вывод канонического уравнения.
- •18. Гипербола. Определение. Вывод канонического уравнения
- •19.Парабола. Определение. Вывод канонического уравнения
- •20.Прямая и плоскость в пространстве
- •21.Системы линейных уравнений
- •22.Матрицы и их классификация
- •24. Определители и их свойства. Теорема Лапласа
- •25.Обратная матрица. Определение и алгоритм вычисления
- •1. Находим определитель исходной матрицы.
- •3. Находим аt, транспонированную к а.
- •27.Системы векторов, операции над ними
- •28. Ранг матрицы. Теорема о ранге матрицы
- •29.Линейные операторы и матрицы
- •30.Собственные векторы линейных операторов
- •31.Решение системы линейных уравнений с помощью определителей.Формулы крамера
- •32.Решение системы линейных уравнений в матричной форме
- •33.Решение системы линейных урав-й методом гаусса
- •34.Сущность и условия применения теории вероятности
- •36.Вероятностное пространство.
- •37.Элементы комбинаторного анализа.
- •38. Непосредственный подсчет вероятностей.
- •39. Теорема сложения вероятностей.
- •40. Теорема умножения вероятностей.
- •41.Формула полной вероятности
- •42. Теорема Байеса.
- •42. Формула Бернули.
- •45. Основные числовые характеристики непрерывной случайной дискретной величины.
- •46. Основные числовые характеристики непрерывной случайной величиНы
- •47.Равновероятностный закон распределения вероятностей.
- •48.Числовые характеристикисистемы двух случайных величин.Зависимость между случайными величинами
- •49. Неравенство Чебышева.
- •50. Закон больших чисел и его следствие.
- •Слабый закон больших чисел
- •Усиленный закон больших чисел
41.Формула полной вероятности
П
усть
событие А может наступить при условии
реализации одной из гипотез Н1,
Н2, ..., Нn,
образующих полную группу событий.
Тогда
Формула
(1) называется формулой полной
вероятности.
42. Теорема Байеса.
Пусть имеется
полная группа несовместных гипотез
с
известными вероятностями их наступления
.
Пусть в результате опыта наступило
событие А, условные вероятности которого
по каждой из гипотез известны, т.е.
известны вероятности
.
Требуется определить
какие вероятности имеют гипотезы
относительно
события А, т.е. условные вероятности
.
Теорема. Вероятность гипотезы после испытания равна произведению вероятности гипотезы до испытания на соответствующую ей условную вероятность события, которое произошло при испытании, деленному на полную вероятность этого события.
Эта формула называется формулой Бейеса.
42. Формула Бернули.
Возникает в тех случаях, когда ставится вопрос: сколько раз происходит некоторое событие в серии из определенного числа независимых наблюдений (опытов), выполняемых в одинаковых условиях.
Для удобства и наглядности будем полагать, что нам известна величина p – вероятность того, что вошедший в магазин посетитель окажется покупателем и (1– p) = q – вероятность того, что вошедший в магазин посетитель не окажется покупателем.
Если X – число покупателей из общего числа n посетителей, то вероятность того, что среди n посетителей оказалось k покупателей равна
P(X= k) =
,
где k=0,1,…n
(1)
Формулу (1) называют формулой Бернулли. При большом числе испытаний биномиальное распределение стремиться к нормальному.
.44 Случайные величины.
Случайной величиной называется величина, которая в результате опыта может принимать то или иное значение, причем заранее известно какое именно.
Случайные величины можно разделить на две категории.
Дискретной случайной величиной называется такая величина, которая в результате опыта может принимать определенные значения с определенной вероятностью, образующие счетное множество (множество, элементы которого могут быть занумерованы).
Это множество может быть как конечным, так и бесконечным.
Например, количество выстрелов до первого попадания в цель является дискретной случайной величиной, т.к. эта величина может принимать и бесконечное, хотя и счетное количество значений.
Непрерывной случайной величиной называется такая величина, которая может принимать любые значения из некоторого конечного или бесконечного промежутка.
Очевидно, что число возможных значений непрерывной случайной величины бесконечно.
Для задания случайной величины недостаточно просто указать ее значение, необходимо также указать вероятность этого значения.
45. Основные числовые характеристики непрерывной случайной дискретной величины.
Определение. Соотношение между возможными значениями случайной величины и их вероятностями называется законом распределения дискретной случайной величины.
Закон распределения может быть задан аналитически, в виде таблицы или графически.
Таблица соответствия значений случайной величины и их вероятностей называется рядом распределения.
Графическое представление этой таблицы называется многоугольником распределения. При этом сумма все ординат многоугольника распределения представляет собой вероятность всех возможных значений случайной величины, а, следовательно, равна единице.
