
- •1.Графики и свойства основных элементарных функций
- •2.Предел функции
- •3.Основные теоремы о пределах.Асимптоды графика функций
- •4 Непрерывность функции в точке и на интервале
- •5 Точки разрыва первого и второго рода.
- •6. Производная и дифференциал
- •7.Основные теоремы дифференциального исчисления.
- •8.Функции нескольких переменных и их непрерывность.
- •9.Производные функций нескольких переменных.
- •10.Дифференциалы функций нескольких переменных.
- •11.Поиск экстремума функции.
- •12.Поиск экстремума функции двух переменных.
- •13.Неопределенный интеграл,основные теоремы
- •Свойства неопределенного интеграла:
- •14.Определенный интеграл,основные теоремы
- •16.Прямая линия на плоскости.
- •17.Эллипс:определение и вывод канонического уравнения.
- •18. Гипербола. Определение. Вывод канонического уравнения
- •19.Парабола. Определение. Вывод канонического уравнения
- •20.Прямая и плоскость в пространстве
- •21.Системы линейных уравнений
- •22.Матрицы и их классификация
- •24. Определители и их свойства. Теорема Лапласа
- •25.Обратная матрица. Определение и алгоритм вычисления
- •1. Находим определитель исходной матрицы.
- •3. Находим аt, транспонированную к а.
- •27.Системы векторов, операции над ними
- •28. Ранг матрицы. Теорема о ранге матрицы
- •29.Линейные операторы и матрицы
- •30.Собственные векторы линейных операторов
- •31.Решение системы линейных уравнений с помощью определителей.Формулы крамера
- •32.Решение системы линейных уравнений в матричной форме
- •33.Решение системы линейных урав-й методом гаусса
- •34.Сущность и условия применения теории вероятности
- •36.Вероятностное пространство.
- •37.Элементы комбинаторного анализа.
- •38. Непосредственный подсчет вероятностей.
- •39. Теорема сложения вероятностей.
- •40. Теорема умножения вероятностей.
- •41.Формула полной вероятности
- •42. Теорема Байеса.
- •42. Формула Бернули.
- •45. Основные числовые характеристики непрерывной случайной дискретной величины.
- •46. Основные числовые характеристики непрерывной случайной величиНы
- •47.Равновероятностный закон распределения вероятностей.
- •48.Числовые характеристикисистемы двух случайных величин.Зависимость между случайными величинами
- •49. Неравенство Чебышева.
- •50. Закон больших чисел и его следствие.
- •Слабый закон больших чисел
- •Усиленный закон больших чисел
27.Системы векторов, операции над ними
N-мерным вектором называется упорядоченная совокупность n действительных чисел, записываемых в виде Х=(х1,х2,…хn) , где хi – i-я компонента вектора Х.
Два n-мерных вектора равны тогда и только тогда, когда равны их соответствующие компоненты, т.е. Х=У, если xi=yi, i=1…n.
Суммой двух векторов одинаковой размерности n называется вектор Z=X+Y, компоненты которого равны сумме соответствующих компонент слагаемых векторов, т.е. zi=xi+yi , i=1…n.
Произведением вектора Х на действительное число λ называется вектор V=λX, компоненты которого равны произведению λ на соответствующие компоненты вектора Х, т.е. vi=λxi , i=1…n.
Линейные операции над векторами удовлетворяют следующим свойствам:
Х + У = У + Х;
(Х + У) + Z = X + (Y + Z);
a(bX) = (ab)X;
a(X + Y) = aX + aY;
(a + b)X = aX + bX;
Существует нулевой вектор О=(0,0,…0) такой, что Х + О = Х, для любого Х;
Для любого вектора Х существует противоположный вектор (-Х) такой, что Х + (-Х) = О;
1∙Х = Х для любого Х.
О пределение Множество векторов с действительными компонентами, в котором определены операции сложения векторов и умножения
28. Ранг матрицы. Теорема о ранге матрицы
В матрице размера m x n вычеркиванием каких-либо строк и столбцов можно выделить квадратные подматрицы k-го порядка, где k≤min(m; n). Определители таких подматриц называются минорами k-го порядка матрицы А. Рангом матрицы А называется наивысший порядок отличных от нуля миноров этой матрицы.Ранг матрицы А обозначается rang A или r(A).Из определения следует:
1) ранг матрицы размера m x n не превосходит меньшего из её размеров, т.е. r(A) ≤ min (m; n).
2) r(A)=0 тогда и только тогда, когда все элементы матрицы равны нулю, т.е. А=0.
3) Для квадратной матрицы n-го порядка r(A) = n тогда и только тогда, когда матрица А – невырожденная.
В общем случае определение ранга матрицы перебором всех миноров достаточно трудоемко. Для облегчения этой задачи используются элементарные преобразования, сохраняющие ранг матрицы:
1) Отбрасывание нулевой строки (столбца).2) Умножение всех элементов строки (столбца) матрицы на число, не равное нулю.3) Изменение порядка строк (столбцов) матрицы.4) Прибавление каждому элементу одной строки (столбца) соответствующих элементов другой строки (столбца), умноженных на любое число.5) Транспонирование матрицы.
Теорема. Ранг матрицы не изменится при элементарных преобразованиях матрицы.Ранг ступенчатой матрицы равен r , так как имеется минор r-го порядка неравный нулю │А│= а11∙а22 ∙…∙аrr.
Теорема Кронекера-Капелли. Система линейных уравнений совместна тогда и только тогда, когда ранг матрицы системы равен рангу расширенной матрицы этой системы. Для совместных систем линейных уравнений верны следующие утверждения:
1. Если ранг матрицы совместной системы равен числу переменных, т.е. r = n, то система (1) определенная и имеет единственное решение;
2. Если ранг матрицы совместной системы меньше числа переменных, т.е. r < n, то система (1) - неопределённая и имеет бесконечное множество решений.
Пусть r<n, тогда r переменных называются основными (или базисными), если определитель матрицы из коэффициентов при них (т.е. базисный минор) отличен от нуля. Остальные n-r переменных называются неосновными (или свободными).
Решение системы (1), в котором все n- r неосновных переменных равны нулю, называется базисным.