
- •Краткая история эволюции вычислительных систем.
- •Третий период (начало 60-х – 1980 г.). Компьютеры на основе интегральных микросхем. Первые многозадачные ос
- •Четвертый период (с 1980 г. По настоящее время). Персональные компьютеры. Классические, сетевые и распределенные системы
- •Основные понятия, концепции операционных систем.
- •Архитектурные особенности ос. Монолитное ядро. Многоуровневые системы. Виртуальные машины. Микроядерная архитектура. Смешанные системы.
- •1.4.1 Монолитное ядро
- •1.4.2 Слоеные системы (Layered systems)
- •1.4.3 Виртуальные машины
- •1.4.4 Микроядерная архитектура.
- •1.4.5 Смешанные системы
- •Классификация ос. Критерии классификации.
- •Процессы. Понятие процесса. Состояние процесса.
- •2.1. Понятие процесса
- •2.2. Состояния процесса
- •Операции над процессами. Набор операций. Process Control Block и контекст процесса.
- •Одноразовые и многоразовые операции. Переключение контекста.
- •2.3.3. Одноразовые операции
- •2.3.4. Многоразовые операции
- •2.3.5. Переключение контекста
- •Планирование процессов. Уровни планирования. Критерии планирования и требования к алгоритмам.
- •3.1. Уровни планирования
- •3.2. Критерии планирования и требования к алгоритмам
- •Планирование процессов. Параметры планирования. Вытесняющее и невытесняющее планирование.
- •3.3. Параметры планирования
- •3.4. Вытесняющее и невытесняющее планирование
- •Алгоритмы планирования процессов. First-Come, First-Served (fcfs).
- •Алгоритмы планирования процессов. Round Robin (rr).
- •Алгоритмы планирования процессов. Shortest-Job-First (sjf).
- •Гарантированное планирование процессов. Приоритетное планирование.
- •3.5.5. Приоритетное планирование
- •Многоуровневые очереди (Multilevel Queue), многоуровневые очереди с обратной связью (Multilevel Feedback Queue).
- •3.5.7. Многоуровневые очереди с обратной связью (Multilevel Feedback Queue)
- •Кооперация процессов. Взаимодействующие процессы. Категории средств обмена информацией.
- •4.1. Взаимодействующие процессы
- •4.2. Категории средств обмена информацией
- •Логическая организация механизма передачи информации. Информационная валентность процессов и средств связи.
- •Особенности передачи информации с помощью линий связи. Буферизация. Нити исполнения.
- •4.3.3.1 Буферизация
- •Механизмы синхронизации процессов. Семафоры. Концепция семафоров. Мониторы. Сообщения.
- •6.1. Семафоры
- •6.1.1. Концепция семафоров
- •6.3. Сообщения
- •Тупики. Условия возникновения. Обнаружение тупиков. Основные направления борьбы с тупиками.
- •7.2 Концепция ресурса
- •7.3 Условия возникновения тупиков
- •7.4 Основные направления борьбы с тупиками.
- •Физическая организация памяти компьютеров.
- •21.Логическая память. Связывание адресов.
- •Схемы управления памятью. Схема с фиксированными разделами.
- •Схемы управления памятью. Оверлейная структура.
- •24.Схемы управления памятью. Динамическое распределение. Свопинг. Схема с переменными разделами.
- •8.3.3 Мультипрограммирование с переменными разделами.
- •Страничная память. Сегментная и сегментно-страничная организация памяти.
- •9.2.1 Страничная память
- •Архитектурные средства поддержки виртуальной памяти. Страничная виртуальная память.
- •9.2.1 Страничная память
- •Архитектурные средства поддержки виртуальной памяти. Сегментно-страничная организация виртуальной памяти. Структура таблицы страниц.
- •9.2.3 Таблица страниц
- •Ассоциативная память. Размер страниц. Инвертированная таблица страниц.
- •Аппаратно-независимый уровень управления виртуальной памятью. Алгоритмы замещения страниц. Алгоритм fifo. Выталкивание первой пришедшей страницы. Аномалия Билэди.
- •10.3.1 Fifo алгоритм. Выталкивание первой пришедшей страницы.
- •10.3.2 Оптимальный алгоритм
- •Аппаратно-независимый уровень управления виртуальной памятью. Управление количеством страниц, выделенным процессу. Модель рабочего множества. Трешинг.
- •Файловая система. Имена файлов. Типы файлов. Атрибуты файлов. Организация файлов и доступ к ним. Операции над файлами.
- •11.2 Имена файлов
- •11.4 Типы и атрибуты файлов
- •11.5 Доступ к файлам
- •Директории. Логическая структура файлового архива. Операции над директориями. Реализация файловой системы. Структура файловой системы. Защита файлов
- •11.8 Операции над директориями
- •Управление внешней памятью. Методы выделения дискового пространства. Управление свободным и занятым дисковым пространством. Размер блока.
- •12.3.2 Управление свободным и занятым дисковым пространством.
- •12.3.3 Размер блока
- •Система управления вводом – выводом. Физические принципы организации ввода – вывода. Структура контроллера устройств. Прямой доступ к памяти (Direct Memory Access – dma).
- •13.1 Физические принципы организации ввода-вывода.
- •Структура контроллера устройства.
- •Прямой доступ к памяти (Direct Memory Access – dma).
- •Логические принципы организации ввода – вывода. Структура системы ввода – вывода. Буферизация и кэширование.
- •13.2.1. Структура системы ввода-вывода.
- •Буферизация и кэширование.
- •Сети и сетевые операционные системы. Сетевые и распределенные операционные системы. Понятие протокола. Структура сетевой операционной системы
- •Адресация в сети. Одноуровневые адреса. Двухуровневые адреса. Удаленная адресация и разрешение адресов. Локальная адресация. Понятие порта. Полные адреса
- •Безопасность операционных систем. Угрозы безопасности. Криптография – базовая технология безопасности операционных систем.
- •15.2 Классификация угроз
- •15.3 Формализация подхода к обеспечению информационной безопасности. Классы безопасности
- •15.4 Политика безопасности
- •15.5 Криптография, как одна из базовых технологий безопасности ос.
- •Защитные механизмы операционных систем. Идентификация и аутентификация. Пароли, уязвимость паролей. Авторизация. Разграничение доступа.
- •16.1 Идентификация и аутентификация
- •16.1.1 Пароли, уязвимость паролей
9.2.1 Страничная память
В наиболее простом и наиболее часто используемом случае страничной виртуальной памяти виртуальная память и физическая представляются состоящими из наборов блоков или страниц одинакового размера. Виртуальные адреса делятся на страницы (page), соответствующие единицы в физической памяти образуют страничные кадры (page frames), а в целом система поддержки страничной виртуальной памяти называется пейджингом (paging). Передача информации между памятью и диском всегда осуществляется целыми страницами. Страницы, в отличие от сегментов, имеют фиксированную длину, обычно являющуюся степенью числа 2, и не могут перекрываться.
Виртуальный адрес в страничной системе упорядоченная пара (p,d), где p - номер страницы в виртуальной памяти, а d - смещение в рамках страницы p, где размещается адресуемый элемент. Процесс может выполняться, если его текущая страница находится в оперативной памяти. Если текущей страницы в главной памяти нет, она должна быть переписана (подкачана) из внешней памяти. Поступившая страница может быть размещена в любой свободный страничный кадр. Система отображения виртуальных адресов в физические сводится к системе отображения виртуальных страниц в физические и представляет собой таблицу страниц.
Для преобразования адресного пространства каждого процесса используется одна или несколько таблиц страниц, которые обычно хранятся в оперативной памяти. Для ссылки на таблицу страниц используется специальный регистр процессора. Особенности хранения таблицы страниц описаны ниже. Интерпретация виртуального (логического) адреса показана на рис. 9.1
сегментно-страничная организациz памяти
Существуют две другие схемы организации виртуальной памяти: сегментная и сегментно-страничная. Идеи сегментации изложены во введении к предыдущей главе. При сегментной организации виртуальный адрес по-прежнему является двумерным и состоит из двух полей - номера сегмента и смещения внутри сегмента. Заметим, что с точки зрения ОС сегменты являются логическими сущностями и их главное назначение хранение и защита однородной информации (кода, данных и т.д.).
С точки зрения пользователя процесс представляется обычно не как линейный массив байтов, а как набор сегментов переменного размера (данные, код, стек). Сегментация - схема управления памятью, поддерживающая этот взгляд пользователя. Сегменты содержат процедуры, массивы, стек или скалярные величины, но обычно не содержат информацию смешанного типа.
При сегментно-страничной организации виртуальной памяти происходит двухуровневая трансляция виртуального адреса в физический. В этом случае виртуальный адрес состоит из трех полей: номера сегмента виртуальной памяти, номера страницы внутри сегмента и смещения внутри страницы. Соответственно, используются две таблицы отображения - таблица сегментов, связывающая номер сегмента с таблицей страниц, и отдельная таблица страниц для каждого сегмента.
Рис. 9.3 Формирование физического адреса при сегментно-страничной организации памяти.
Сегментно-страничная организация виртуальной памяти позволяла совместно использовать одни и те же сегменты данных и программного кода в виртуальной памяти разных задач (для каждой виртуальной памяти существовала отдельная таблица сегментов, но для совместно используемых сегментов поддерживались общие таблицы страниц).