Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Osso.docx
Скачиваний:
16
Добавлен:
25.04.2019
Размер:
551.47 Кб
Скачать

8.3.3 Мультипрограммирование с переменными разделами.

В принципе, система свопинга может базироваться на фиксированных разделах. На практике, однако,  использование фиксированных разделов приводит к большим потерям используемой памяти, когда задача существенно меньше раздела.

Более эффективной представляется схема с переменными (динамическими) разделами. В этом случае вначале вся память свободна и не разделена заранее на разделы. Вновь поступающей задаче выделяется необходимая память. После выгрузки процесса память временно освобождается.  По истечении некоторого времени память представляет собой набор занятых и свободных участков  (рис. 8.4)   Смежные свободные участки могут быть объединены в один.

Рис. 8.4  Динамика распределения памяти между процессами. Серым цветом показана неиспользуемая  память.

Типовой цикл работы менеджера памяти состоит в анализе запроса на выделение свободного участка (раздела), выборке его среди имеющихся в соответствие с одной из стратегий  (first fit, best fit, worst fit),  загрузке процесса в выбранный раздел и последующем внесении изменений в таблицы свободных и занятых областей. Аналогичная корректировка необходима и после завершения процесса. Связывание адресов может быть осуществлено на этапах загрузки и выполнения.

Этот метод более гибок по сравнению с методом фиксированных разделов

Этому методу также присуща внешняя фрагментация вследствие наличия большого числа участков свободной памяти. Проблемы фрагментации могут быть различными. В худшем случае мы можем иметь участок свободной (потерянной) памяти между двумя процессами. Если все эти куски объединить в один блок, мы смогли бы разместить больше процессов. Выбор между first-fit и best-fit слабо влияет на величину фрагментации.

В зависимости от суммарного размера памяти и среднего размера процесса эта проблема может быть большей или меньшей. Статистический анализ показывает, что при наличии n блоков пропадает n/2 блоков, то есть 1/3 памяти! Это известное 50% правило (два соседних свободных участка в отличие от двух соседних процессов могут быть объединены в один).

Одно из решений проблемы внешней фрагментации - разрешить адресному пространству процесса не быть непрерывным, что разрешает выделять процессу память в любых доступных местах. Один из способов реализации такого решения - это paging , используемый во многих современных ОС (будет рассмотрен ниже).

Другим способом борьбы с внешней фрагментацией является сжатие, то есть перемещение всех занятых (свободных) участков в сторону возрастания (убывания) адресов, так, чтобы вся свободная память образовала непрерывную область. Этот метод иногда называют схемой с перемещаемыми разделами. В идеале фрагментация после сжатия должна отсутствовать.

Сжатие, однако, является дорогостоящей процедурой, алгоритм выбора оптимальной стратегии сжатия очень труден, и, как правило, сжатие осуществляется в комбинации с выгрузкой и загрузкой по другим адресам.

  1. Страничная память. Сегментная и сегментно-страничная организация памяти.

Понятие виртуальной памяти.

Уже давно существует проблема размещения в памяти программ, размер которых превышает  размер доступной памяти. Один из вариантов ее решения организация структур с перекрытием рассмотрен в предыдущей главе. При этом предполагалось активное участие программиста в процессе сегментации и  загрузки программы.  Было предложено переложить проблему на компьютер.  Развитие архитектуры компьютеров привело к значительному усложнению организации памяти, соответственно, усложнились и расширились задачи операционной системы по управлению памятью. Одним из главных усовершенствований архитектуры стало появление виртуальной памяти (virtual memory). Она впервые была реализована в 1959 г. на компьютере Атлас, разработанном в Манчестерском университете, и стала популярной только спустя десятилетие.

При помощи виртуальной памяти обычно решают две задачи. Во-первых, виртуальная память позволяет адресовать пространство, гораздо большее, чем емкость физической памяти конкретной вычислительной машины. В соответствии с принципом локальности для реальных программ  обычно нет  необходимости в помещении их в физическую память целиком.

Возможность выполнения  программы, находящейся в памяти лишь частично имеет ряд вполне очевидных преимуществ:

Программа не ограничена величиной физической памяти. Упрощается разработка программ, поскольку можно задействовать большие виртуальные пространства, не заботясь о размере используемой памяти.

Поскольку появляется возможность частичного помещения программы (процесса) в память и гибкого перераспределения памяти между программами, можно разместить в памяти больше программ, что увеличивает загрузку процессора и пропускную способность системы.

Объем ввода-вывода для  выгрузки части программы на диск может быть меньше, чем в варианте классического свопинга, в итоге, каждая программа будет работать быстрее.

Таким образом, возможность  обеспечения (при поддержке операционной системы) для программы видимости практически неограниченной (32- или 64-разрядной) адресуемой пользовательской памяти при наличии основной памяти существенно меньших размеров очень важный аспект. Но введение виртуальной памяти позволяет решать другую не менее важную задачу обеспечение контроля доступа к отдельным сегментам памяти и в частности защиту  пользовательских программ друг от друга и защиту ОС от пользовательских программ.

С целью защиты  виртуальная память поддерживалась и на компьютерах с 16-разрядной адресацией, в которых объем основной памяти зачастую существенно превышал 64 Кбайта (размер виртуальной памяти).  Например, 16-разрядный компьютер PDP-11/70 мог иметь до 2 Мбайт оперативной памяти. Операционная система этого компьютера, тем не менее, поддерживала виртуальную память, основным смыслом которой являлось обеспечение защиты и перераспределения  основной памяти между  пользовательскими процессами.

Напомним, что в системах с виртуальной памятью те адреса, которые  генерирует программа, - (логические адреса) -  называются виртуальными, и они формируют виртуальное адресное пространство. В отсутствие механизма виртуальной памяти  виртуальное адресное пространство непосредственно отображается в физическое пространство.

Хотя известны и чисто программные реализации виртуальной памяти, это направление получило наиболее широкое развитие после получения соответствующей аппаратной поддержки. Идея аппаратной части механизма виртуальной памяти состоит в том, что адрес памяти, вырабатываемый командой, интерпретируется аппаратурой не как реальный адрес некоторого элемента основной памяти, а как некоторая структура, где адрес является лишь одним из компонентов наряду с атрибутами, характеризующими способ обращения по данному адресу.

Традиционно считается, что существует три модели виртуальной памяти: страничная,  сегментная и их комбинация - сегментно-страничная модель. По-видимому, более правильно считать, что существует (и поддерживается аппаратно большинством платформ) страничная модель виртуальной памяти. Сегментно-страничная модель является синтезом страничной модели и идеи сегментации, изложенной в предыдущей главе. Причем для тех архитектур, в которых сегменты не поддерживаются аппаратно их реализация задача  архитектурно-независимой компоненты менеджера памяти.  Сегментная организация в чистом виде практически не встречается.

Страничная

Программисты, пишущие на языках низкого уровня должны иметь представление о сегментной организации, явным образом меняя значения сегментных регистров (это хорошо видно по текстам программ, написанных на Ассемблере). Логическое адресное пространство - набор сегментов. Каждый сегмент имеет имя, размер и другие параметры (уровень привилегий, разрешенные виды обращений, флаги присутствия). Пользователь специфицирует каждый адрес двумя величинами: именем сегмента и смещением. (В отличие от схемы пэйджинга, где пользователь задает только один адрес, который разбивается hardware на номер страницы и смещение,  прозрачным для программиста образом.)

Каждый сегмент - линейная последовательность адресов от 0 до максимума.  Различные сегменты могут иметь различные  длины, которые могут меняться динамически (например, сегмент стека).  В элементе таблицы сегментов помимо физического адреса начала сегмента (если виртуальный сегмент содержится в основной памяти) содержится длина сегмента. Если размер смещения в виртуальном адресе выходит за пределы размера сегмента, возникает прерывание.

Логический адрес  - упорядоченная пара v=(s,d), номер сегмента и смещение внутри сегмента.

В системах, где сегменты  поддерживаются аппаратно, эти параметры обычно хранятся в таблице дескрипторов сегментов, а программа обращается к этим дескрипторам по номерам‑селекторам. При этом в контекст каждого процесса входит набор сегментных регистров, содержащих селекторы текущих сегментов кода, стека, данных и др. и определяющих, какие сегменты будут использоваться при разных видах обращений к памяти. Это позволяет процессору уже на аппаратном уровне определять допустимость обращений к памяти, упрощая реализацию защиты информации от повреждения и несанкционированного доступа.

Рис. 9.2  Преобразование  логического адреса при сегментной организации памяти.

Аппаратная поддержка сегментов относительно слабо распространена (главным образом на процессорах архитектуры Intel) и характеризуется довольно медленной загрузкой селекторов в сегментные регистры, выполняемая при каждом переключении контекста и при каждом переходе между разными сегментами.  В системах с чисто страничной организацией памяти для  описания типового адресного пространства процесса,  представляющего собой набор сегментов, сегментация реализуется на уровне, независимом от аппаратуры.

Хранение в памяти сегментов большого размера может оказаться неудобным.  Возникает идея их пейджинга.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]