Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
12_35_36_58.doc
Скачиваний:
0
Добавлен:
25.04.2019
Размер:
94.21 Кб
Скачать

12.Пси функция.

Волнова́я фу́нкция, или пси-функция — комплекснозначная функция, используемая в квантовой механике для описания чистого состояния системы. Является коэффициентом разложения вектора состояния по базису (обычно координатному):

где — координатный базисный вектор, а — волновая функция в координатном представлении.Физический смысл волновой функции заключается в том, что согласно копенгагенской интерпретации квантовой механики плотность вероятности нахождения частицы в данной точке пространства в данный момент времени считается равной квадрату абсолютного значения волновой функции этого состояния в координатном представлении.

Физический смысл волновой функции.В координатном представлении волновая функция зависит от координат (или обобщённых координат) системы. Физический смысл приписывается квадрату её модуля , который интерпретируется как плотность вероятности (для дискретных спектров — просто вероятность) обнаружить систему в положении, описываемом координатами в момент времени :

Тогда в заданном квантовом состоянии системы, описываемом волновой функцией , можно рассчитать вероятность P того, что частица будет обнаружена в любой области пространства конечного объема V:

Следует также отметить, что возможно измерение и разницы фаз волновой функции, например, в опыте Ааронова — Бома.

Волновая функция в различных представлениях

Набор координат, которые выступают в роли аргументов функции, представляет собой полную систему коммутирующих наблюдаемых. В квантовой механике возможно выбрать несколько полных наборов наблюдаемых, поэтому волновая функция одного и того же состояния может быть записана от разных аргументов. Выбранный для записи волновой функции полный набор величин определяет представление волновой функции. Так, возможны координатное представление, импульсное представление, в квантовой теории поля используется вторичное квантование и представление чисел заполнения или представление Фока и др.

Если волновая функция, например, электрона в атоме, задана в координатном представлении, то квадрат модуля волновой функции представляет собой плотность вероятности обнаружить электрон в той или иной точке пространства. Если эта же волновая функция задана в импульсном представлении, то квадрат её модуля представляет собой плотность вероятности обнаружить тот или иной импульс.

Принцип суперпозиции квантовых состояний

Для волновых функций справедлив принцип суперпозиции, заключающийся в том, что если система может пребывать в состояниях, описываемых волновыми функциями и , то она может пребывать и в состоянии, описываемом волновой функцией при любых комплексных и .

Очевидно, что можно говорить и о суперпозиции (сложении) любого числа квантовых состояний, то есть о существовании квантового состояния системы, которое описывается волновой функцией

В таком состоянии квадрат модуля коэффициента определяет вероятность того, что при измерении система будет обнаружена в состоянии, описываемом волновой функцией .

Поэтому для нормированных волновых функций

Условия регулярности волновой функции

Вероятностный смысл волновой функции накладывает определенные ограничения, или условия, на волновые функции в задачах квантовой механики. Эти стандартные условия часто называют условиями регулярности волновой функции.

1.Условие конечности волновой функции. Волновая функция не может принимать бесконечных значений, таких, что интеграл станет расходящимся. Следовательно, это условие требует, чтобы волновая функция была квадратично интегрируемой функцией. В частности, в задачах с нормированной волновой функцией квадрат модуля волновой функции должен стремиться к нулю на бесконечности.

2.Условие однозначности волновой функции. Волновая функция должна быть однозначной функцией координат и времени, так как плотность вероятности обнаружения частицы должна определяться в каждой задаче однозначно. В задачах с использованием цилиндрической или сферической системы координат условие однозначности приводит к периодичности волновых функций по угловым переменным.

3.Условие непрерывности волновой функции. В любой момент времени волновая функция должна быть непрерывной функцией пространственных координат. Кроме того, непрерывными должны быть также частные производные волновой функции , , . Эти частные производные функций лишь в редких случаях задач с идеализированными силовыми полями могут терпеть разрыв в тех точках пространства, где потенциальная энергия, описывающая силовое поле, в котором движется частица, испытывает разрыв второго рода.Нормированность волновой функции.Волновая функция по своему смыслу должна удовлетворять так называемому условию нормировки, например, в координатном представлении имеющее вид:

Это условие выражает тот факт, что вероятность обнаружить частицу с данной волновой функцией где-либо во всём пространстве равна единице. В общем случае интегрирование должно производиться по всем переменным, от которых зависит волновая функция в данном представлении.

58.Нейтрино.

Нейтри́но — нейтральная фундаментальная частица с полуцелым спином, участвующая только в слабом и гравитационном взаимодействиях, и относящаяся к классу лептонов. Нейтрино малой энергии чрезвычайно слабо взаимодействуют с веществом: так, нейтрино с энергией порядка 3-10 МэВ имеют в воде длину свободного пробега порядка 1018 м (около 100 св. лет

Свойства нейтрино.

Каждому заряженному лептону соответствует своя пара нейтрино/антинейтрино:

электронное нейтрино/электронное антинейтрино;

мюонное нейтрино/мюонное антинейтрино

тау-нейтрино/анти-тау-нейтрино

Масса нейтрино крайне мала. Верхняя экспериментальная оценка суммы масс всех типов нейтрино составляет всего 0,28 эВ. Разница квадратов масс нейтрино разных поколений, полученная из осцилляционных экспериментов, не превышает 2,7×10−3 эВ².

Масса нейтрино важна для предположения объяснения феномена скрытой массы в космологии, так как, несмотря на её малость, возможно, концентрация нейтрино во Вселенной достаточно высока, чтобы существенно повлиять на среднюю плотность.Если нейтрино имеют ненулевую массу, то различные виды нейтрино могут преобразовываться друг в друга. Это так называемые нейтринные осцилляции, в пользу которых свидетельствуют наблюдения солнечных нейтрино и угловой анизотропии атмосферных нейтрино, а также проведённые в начале этого века эксперименты с реакторными и ускорительными нейтрино.

Перспективы использования

Одно из перспективных направлений использования нейтрино — это нейтринная астрономия. Известно, что звёзды, кроме света, излучают значительный поток нейтрино, которые возникают в процессе ядерных реакций. Поскольку на поздних стадиях звёздной эволюции за счёт нейтрино уносится до 90 % излучаемой энергии (нейтринное охлаждение), то изучение свойств нейтрино (в частности — энергетического спектра солнечных нейтрино) помогает лучше понять динамику астрофизических процессов. Кроме того, нейтрино без поглощения проходят огромные расстояния, что позволяет обнаруживать и изучать ещё более удалённые астрономические объекты.

Другим (практическим) применением является развиваемая в последнее время нейтринная диагностика промышленных ядерных реакторов. Проведённые в конце XX века физиками Курчатовского института эксперименты показали перспективность этого направления, и сегодня в России, Франции, Италии и других странах ведутся работы по созданию нейтринных детекторов, способных в режиме реального времени измерять реакторный нейтринный спектр и тем самым контролировать как мощность реактора, так и композитный состав топлива (включая наработку оружейного плутония).

Теоретически потоки нейтрино могут быть использованы для создания средств связи, что привлекает интерес военных: частица теоретически делает возможной связь с подводными лодками, находящимися на глубинах.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]