- •1.1. Цели естествознания.
- •1.2. Формы движения материи.
- •2.1. Кризисы и революции в естествознании.
- •2.2. Технологии лёгкой промышленности.
- •3.1. Инновации. Виды инноваций. Инновационные технологии. Жизненный цикл нововведений.
- •4.1 Техносфера. Особенности развития технологий. Обновление технологий и подъёмы в экономике.
- •4.2. Добывающая и перерабатывающая промышленность. Инновации в добывающей и перерабатывающей промышленности.
- •5.1) Концептуальные представления о материи, движении, пространстве и времени.
- •5.2) Сущность процесса измерения.
- •6.1. Фундаментальные взаимодействия в природе.
- •6.2. Использование достижений естественных наук в приборостроении. Приборостроение.
- •7.1) Механика как основа физики. Основные законы
- •7.2. Звуковые волны. Инфразвук, гиперзвук, ультразвук и его применение в технике и технологиях.
- •8.1) Законы сохранения количества движения (импульса), энергии и момента количества движения.
- •8.2. Строительные материалы. Технологии производства строительных материалов.
- •10.1. Элементная база компьютера. Развитие твердотельной электроники. Технологии микроэлектроники. Развитие нанотехнологии.
- •10.2) Средства измерений в познании мира.
- •11.2 Промышленная переработка топлива:
- •12.1 Взаимосвязь атомно-молекулярного строения и химических свойств веществ. Периодическая таблица элементов д.И. Менделеева.
- •13.1) Химические связи, химическое равновесие и принцип Ле Шателье. Экзотермические и эндотермические реакции.
- •14.1) Квантовые генераторы: физическая сущность, виды и особенности лазеров.
- •15.2. Выделение информации на фоне помех.
- •16.1 Солнечная система. Законы небесной механики-законы Кеплера
- •16.2. Квантовые эффекты в микромире. Понятие о спектрах излучения и поглощения.
- •17.1. Взаимодействие электромагнитного поля.
- •18.1. Явление самоорганизации в природе.
- •18.2. Физические основы акустики. Эволюция стредств.
- •19.1 Первое и второе начала термодинамики.. Понятие об энтропии
- •19.2 Основные закономерности цепей постоянного тока. Закон Ома.
- •20.1. Органические вещества и соединения естественного происх.
- •20.2. Основные закономерности цепей переменного тока. Закон
- •21.1. Электрический заряд, электрическое поле и их характеристики
- •22.1. Электрический ток, магнитное поле и их характеристики.
- •22.2. Закон Фарадея-Максвела и принцип действия электр.
- •23.1 Геометрическая оптика и волновая теория света.
- •24.1 Металлургической промышленности.
- •24.2 Электромагнитное излучение и его природа. Шкала электрома
- •25.1 Классификация двигателей и принципы их работы.
- •28.2 Ядерная энергия и проблема ее использования.
- •29.2.Поведение веществ в электрических полях. Диэлектрики
- •30.2. Поведение веществ в магнитных полях.
- •31.1. Основные научные достижения в биологии и генетике.
- •32.2. Производство металлов.
- •33.1. Технологии строительства.
- •33.2 Радиоактивность и закон радиоактивного распада.
- •34.1. Развитие химических технологий. Химические процессы. Виды катализа. Применение катализа в химических технологиях.
- •Экономия электрической энергии Освещение
- •35.1. Транспортные технологии. Экономичный автомобиль. Виды транспорта (авиа, автомобильный, железнодорожный, речной, морской, трубопроводный) и их характеристика.
- •35.2 Промышленные биотехнологии. Пищевые технологии. Производство лекарственных препаратов, продуктов питания. Основные направления биотехнологии
- •36.2 Топливные элементы. Водородная энергетика.
- •37.1Сознание и интеллект. Человек и эмоции.
- •37.2 Электрогенератор. Электродвигатель. Применение их в технике и технологиях.
24.1 Металлургической промышленности.
Чугуны – это сплавы железа с углеродом, при содержании углерода более 14,14%.
Черные металлы составляют около 90% всего объема используемых в экономике металлов, причем основную часть из них составляют различные стали. Существуем много легированных сталей разных марок. Легированная сталь – сталь с определенными добавками легирующих веществ: алюминий, марганец, медь, никель, хром.
В зависимости от концентрации этих веществ, возрастает устойчивость к коррозии, увеличивается упругость и т.д.
К цветной металлургии относят добычу обогащенных руд цветных металлов, производство цветных металлов и их сплавов. К цветным металлам относят все металлы и сплавы кроме железа и его сплавов.
Примеры цветных металлов: медь, цинк, олово, титан, магний, свинец, никель.
Добыча цветных металлов – это дорогостоящее производство, поскольку они встречаются гораздо реже черных. Цветные металлы используется в космической и атомной технике, для изготовления различных деталей, проволоки, прутьев, листов, фольги и т.д.
Так же цветные металлы служат средством для производства изделий с помощью метода порошковой металлургии, например: красок различных антикоррозийных покрытий.
Металлы и их свойства.
Металл представляет собой некую металлическую решетку. В узлах решетки находятся положительно заряженные ионы, а между ними перемещаются свободные электроны. Причем наличие свободных электронов в металлах, объясняет их высокую электропроводность и теплопроводность.
Свойства металла. Физические и химические свойства. Классификация и применение металлов.
24.2 Электромагнитное излучение и его природа. Шкала электрома
Электромагнитное излучение (электромагнитные волны) — распространяющееся в пространстве возмущение электрических и магнитных полей.Практически всё, что мы знаем о космосе (и микромире), известно нам благодаря электромагнитному излучению, то есть колебаниям электрического и магнитного полей, которые распространяются в вакууме со скоростью света. Собственно, свет — это и есть особый вид электромагнитных волн, воспринимаемый человеческим глазом.. Точное описание электромагнитных волн и их распространения дают уравнения Максвелла. Однако качественно этот процесс можно объяснить без всякой математики. Возьмем покоящийся электрон — почти точечный отрицательный электрический заряд. Вокруг себя он создает электростатическое поле, которое влияет на другие заряды. На отрицательные заряды действует сила отталкивания, на положительные — сила притяжения, причем все эти силы направлены строго по радиусам, идущим от нашего электрона. С расстоянием влияние электрона на другие заряды ослабевает, но никогда не падает до нуля. Иначе говоря, во всем бесконечном пространстве вокруг себя электрон создает радиальное силовое поле (это верно лишь для электрона, который вечно покоится в одной точке).Допустим, некая сила (не будем уточнять ее природу) неожиданно нарушила покой электрона и заставила его сдвинуться немного в сторону. Теперь силовые линии должны расходиться из нового центра, куда переместился электрон. Но электрическое поле, окружающее заряд, мгновенно перестроиться не может. На достаточно большом расстоянии силовые линии еще долго будут указывать на первоначальное местоположение заряда. Так будет до тех пор, пока не подойдет волна перестройки электрического поля, которая распространяется со скоростью света. Это и есть электромагнитная волна, а ее скорость есть фундаментальное свойство пространства в нашей Вселенной. Электромагнитная волна независимо распространяется от своего источника.Радиоволны: (Атмосферные явления. Переменные токи в проводниках и электронных потоках (колебательные контуры).)Сверхдлинные Длинные Средние Короткие Ультракороткие Оптическое излучение:Инфракрасное излучение Видимое излучение.)Ультрафиолетовое (Излучение атомов под воздействием ускоренных электронов.)Ионизирующее электромагнитное излучение: Рентгеновские. Атомные процессы при воздействии ускоренных заряженных частиц.)Гамма (Ядерные и космические процессы, радиоактивный распад.)
