
- •Вопрос 2 Основные требования, предъявляемые к пищевым добавкам. Кодификация
- •3. Общие подходы к подбору пд.
- •4. Современная концепция оценки безопасности пищевых добавок
- •5 Токсичность: понятие, мера токсичности веществ, оценка токсичности.
- •6 Комплексная оценка технологических функций и определение технологически необходимых доз внесения пищевых добавок.
- •7. Ароматизаторы: определение, классификация, использование.
- •8. Коптильные ароматизаторы:определ-е, использование
- •9. Эфирные масла и душистые вещества: ассортимент, свойства, использование.
- •10 . Вещества улучшающие вкус и аромат м.П.
- •11 Поваренная соль, заменители соли: свойства, использование.
- •12. Консерванты, ассортимент. Механизм действия поваренной соли и коптильного дыма.
- •14. Пимарицин,диоксид серы и соли сернистой кислоты
- •15. Антиокислители: характеристика, свойства, механизм действия, использование.
- •16. Регуляторы кислотности: ассортимент, функции, свойства
- •17. Комплексные пд
- •18. Пищевые добавки усиливающие (модифицирующие) вкус и аромат мясных изделий.
- •19. Пищевые красители: классификация, основные требования, предъявляемые к красителям. Фиксаторы окраски.
- •20. Натуральные пищевые красители: ассортимент. Каратиноиды: характеристика, свойства. Ферментированный рис.
- •21 Антоциановые красители (бетанин, амарантин, антоцианы): характеристика, свойства, действие.
- •22 Красители животного происхождения ( гемовые пигменты, каратиноиды из криля, кармин):характеристика, свойства, действие.
- •23. Синтетические красители:ассортимент,свойства.
- •24. Интенсификаторы окраски, ассортимент, свойства.
- •25. Добавки, повышающие всс белков мяса: свойства, использование.
- •26. Добавки, хорошо связывающие влагу самостоятельно. Характеристика водосвязывающей способности муки и крахмала.
- •27 Гидроколлоиды, используемые в качестве загустителей в производстве мясопродуктов
- •28. Гидроколлоиды, используемые в качестве гелеобразователей в производстве мясопродуктов
- •29 Агар, альгинаты: строение молекул, состав, свойства, использование.
- •30. Каррагинаны: строение молекул, состав, свойства, использование.
- •31 Ксантаны, желатин: строение молекул, состав, свойства, использование.
- •32. Эмульгаторы: строение молекул, ассортимент, свойства, использование
- •33 Пищевые волокна
- •34 Особенности химического состава плодов и овощей
- •35. Строение паренхимной ткани плодов и овощей
- •36. Влияние тепловой обработки на состав овощей
- •37. Состав и свойства полисахаридов клеточных стенок овощей и плодов
- •38. Механизм размягчения паренхимной ткани плодов и овощей
- •39 Влияние технологических факторов на процесс размягчения ткани плодов и овощей
- •40 Современные требования к продуктам питания.
- •41. Функциональные и технологические свойства пектиновых веществ
- •42. Физиологический эффект применения овощей и плодов в технологии комбинированных мясораст-х продуктов.
- •43. Особенности химического состава и биологической ценности круп
- •44. Особенности химического состава и биологической ценности бобовых
- •45. Подготовка круп и бобовых к тепловой обработке. Физико-химические процессы, протекающие в семенах при холодной обработке круп и бобовых.
- •46. Технологический процесс варки круп и бобовых
- •47. Технологический процесс варки плодов и овощей
- •48. Механизм размягчения ткани круп и бобовых в процессе тепловой обработки
- •49. Влияние технологических факторов на процесс размягчения ткани круп и бобовых
- •50. Физико-химические изменения, протекающие в крупах и бобовых при тепловой обработке
- •51. Физико-химические изменения, протекающие в плодах и овощах при тепловой обработке
- •52. Маринады для мясных п/ф. Панировки со специями
- •53. Стабилизация окраски мяса нитрат/нитритом.
- •54. Механизм действия аскорбиновой кислоты, сахара, коптильного дыма на цвет мясного продукта
- •55. Натуральные красители, используемые в производстве мясопродуктов: химическая природа, действие, применение.
- •56. Неорганические красители: ассортимент, действие, использование.
- •57. Синтетические красители:ассортимент,свойства.
- •Вопрос 58. Белковые добавки растительного происхождения: ассортимент, свойства, механизм действия, использование.
- •59. Белковые добавки животного происхождения: ассортимент, свойства, механизм действия, использование.
- •16( А). Регуляторы кислотности: ассортимент, функции, свойства
- •25 (А). Добавки, повышающие влагосвязывающую способность белков мяса: свойства, использование
- •30 (А). Каррагинаны: строение молекул, состав, свойства, использование
- •36 (А) . Влияние тепловой обработки на состав овощей
- •38(А). Механизм размягчения паренхимной ткани плодов и овощей
- •55 (А). Натуральные красители, используемые в производстве мясопродуктов: химическая природа, действие, применение.
- •57 (А). Синтетические красители: ассортимент, действие, использование
38(А). Механизм размягчения паренхимной ткани плодов и овощей
Нецелюлозные полисахариды подвергаются деструкции, в результате которой образуются продукты, обладающие различной растворимостью. Именно степень, деструкции полисахаридов и растворимость продуктов деструкции обусловливают изменение механической прочности ткани клеточных стенок овощей и плодов при тепловой кулипарной обработке. Известно, что пектовая кислота в воде нерастворима, а ее соли щелочных металлов, а также пектины со средней и высокой степенью метоксилирования хорошо растворимы. Иными словами, продукты деструкции, содержащие неметокснлированные и неионизнрованные остатки галактуроновой кислоты, не обладают растворимостью или слабо растворимы, а продукты деструкции, содержащие метоксилированные и ионизированные остатки галактуроновой кислоты, растворимы.
В процессе тепловой обработки овощей и плодов в зависимости от pН среды степень метоксилирования (или этерификации) пектиновых в-в может изменяться: при тепловой обработке в щелочной среде происходит деметоксилирование пектиновых в-в при обработке в кислой среде деметоксилированне пектиновых веществ наблюдается в значительно меньшей степени; при обработке продуктов в присущей им среде деметоксилированне происходит под влиянием пектинметилэстеразы. Так, при варке моркови под влиянием пектинметилэстеразы степень метоксилирования пектиновых веществ снижается на 10-12%.
Наличие уроновых кислот в гемицеллюлозах позволяет говорить о возможности и деструкции подобно пектиновым веществам. Следует отметить, также растворимость в воде арабинанов и ксиланов. В цепи рамногалактуронана устойчивостьть гликозидной связи к гидролизу зависит от степени метоксилирования галактуроновой кислоты. Высокометоксилированные пектиновые вещества, содержащие незначительное количество свободных остатков галактуроновой кислоты подвергаются гидролизу легче, чем низкометоксилированные. Согласно современным представлениям о строении студней пектиновых веществ деструкция протопектина обусловлена в первую очередь распадом волородных связей между этерифицированными остатками галактуроновой кислоты и хелатных связей с участием ионон Са'* и Mg" между неэтерифициронанными остатками галактуроновой кислоты в цепях рамногалактуронана. Кроме того, идет гидролиз гликозидных связей.
Важно, что распад водородных связей между этерифициронанными остатками галактуроновой кислоты возможен при наличии определенного количества влаги. Хелатные связи распадаются только в ходе ионообменных реакций. .
Сдвиг реакции вправо обусловлен образованием нерастворимых или малорастворнмых солен кальция и магния с различными органическими к-ми (щавелевой, фитиновой, лимонной и др.). которые присутствуют в клеточном соке овощей и плодов. При тепловой обработке продуктов клеточной мембраны разрушаются и образуются диффузионные процессы с проникновением указанных кислот в клеточные стенки и реакция протекает с образованием малорастворимых продуктов.
Следовательно, особенность механизма деструкции клеточных стенок различных овощей и плодов определяется прежде всего степенью этерификации остатков галактуроновой кислоты в протопектине.
При тепловой кулинарной обработке овощей наряду и параллельно с деструкцией протопектина происходит деструкция гемицеллюлоз также с образованием растворимых продуктов. Деструкция гемицеллюлоз начинается при более высоких температурах, чем деструкция протопектина, — от 70 до 80"С при более высоких температурах процесс усиливается.