
- •1, 4, 6, 7 – Узлы; 2, 3, 5, 8 – точки соединения элементов; 1–4, 4–6, 4–7, 6–7,
- •Законы Ома и Кирхгофа
- •Режимы работы электрических цепей
- •Эквивалентные преобразования последовательного, параллельного и смешанного соединений с r-элементами
- •Преобразование схем соединения сопротивлений «звезда» и «треугольник»
- •Лекция 2 Классификация цепей и особенности их расчета
- •Метод прямого применения законов Кирхгофа
- •Метод наложения (суперпозиции)
- •Метод контурных токов
- •Метод эквивалентного генератора
- •Метод узловых напряжений (метод двух узлов)
- •Уравнение баланса мощностей электрической цепи
- •Потенциальная диаграмма
- •Векторное изображение синусоидальных эдс, напряжений и токов
- •Комплексный метод расчета электрических цепей синусоидального тока
- •Законы Ома и Кирхгофа в комплексной форме
- •Пассивные элементы в цепи синусоидального тока
- •Цепь с резистивным элементом
- •Лекция 4
- •Цепь с последовательным соединением резистивного и индуктивного элементов
- •Цепь с емкостным элементом
- •Цепь с последовательным соединением резистивного и емкостного элементов
- •Электрическая цепь с последовательным соединением элементов с r, l, c
- •Треугольники напряжений, сопротивлений и мощностей
- •Резонанс напряжений
- •Лекция №6. Цепь с параллельным соединением резистивного, индуктивного и емкостного элементов
- •Треугольники токов и проводимостей
- •Параллельное соединение нескольких электроприемников
- •Резонанс токов
- •Цепь со смешанным соединением резистивного, индуктивного и емкостного элементов
- •Мощность однофазной цепи синусоидального тока
- •Методика расчета однофазных цепей синусоидального тока
- •Лекция 7
- •Соединение обмоток генератора и фаз приемника звездой
- •Трехфазный приемник, соединенный по схеме «звезда»
- •Соединение фаз приемника по схеме «треугольник»
- •Определение мощности и коэффициента мощности трехфазного приемника
- •Подключение катушки индуктивности с r, l к сети с постоянным напряжением
- •Переходные процессы при заряде и разряде конденсатора
- •Цепи периодического несинусоидального тока Причины возникновения периодических несинусоидальных эдс, токов и напряжений. Представление функций рядом Фурье
- •Действующее значение несинусоидальных электрических величин
- •Мощность электрической цепи при несинусоидальных напряжениях и токах
- •Лекция 10 основы электроники
- •Лекция 11 Полупроводниковые резисторы, диоды, транзисторы
- •Полевые транзисторы
- •Тиристоры
- •Интегральные микросхемы (имс)
- •Лекция 13
- •Т рехфазный мостовой управляемый выпрямитель (ув).
- •Сглаживающие фильтры
- •Усилители на биполярных и полевых транзисторах
- •Усилительный каскад на биполярном транзисторе с общим эмиттером
- •Графоаналитический анализ работы каскада на биполярном транзисторе с общим эмиттером
- •Амплитудная, амплитудно-частотная и фазочастотная характеристики каскада усилителя с общим эмиттером
- •Температурная стабилизация
- •Понятие о многокаскадных усилителях напряжения
- •Усилительные каскады на полевых транзисторах с общим истоком
- •Режимы работы усилительных каскадов
- •Лекция 15 Усилители мощности
- •Обратные связи в усилителях
- •Балансный усилительный каскад (дифференициальный каскад)
- •Лекция 16 Операцинные усилители
- •Примеры построения аналоговых схем на операционном усилителе
- •Импульсные устройства
- •Ключевой режим работы транзистора
- •Импульсный (нелинейный) режим работы операционного усилителя. Компараторы
- •Мультивибраторы
- •Элементы вычислительных машин Основные логические операции и их реализация на базе микросхем
- •Триггеры
- •Регистры
- •Лекция 18 трансформаторы.
- •Опыт короткого замыкания
- •Уравнения и схема замещения трансформатора. Приведенный трансформатор
- •Лекция 19 Параметры приведенной вторичной обмотки и схема замещения трансформатора. Приведенный трансформатор
- •Векторная диаграмма трансформатора
- •Внешняя характеристика и коэффициент полезного действия трансформатора
- •Измерительные трансформаторы
- •Лекция 20 Трехфазные трансформаторы
- •Лекция 21. Асинхронные машины Устройство трехфазного асинхронного двигателя
- •Принцип работы асинхронного двигателя
- •Электродвижущая сила и электромагнитный момент асинхронного двигателя
- •Анализ механической характеристики асинхронного двигателя
- •Лекция 22. Способы торможения асинхронных двигателей
- •Особенности новых серий двигателей
- •Лекция 24 синхронные машины Устройство и типы синхронных машин
- •Синхронный генератор
- •Лекция 25 Принцип работы и пуск синхронного двигателя
- •Электромагнитный момент синхронного двигателя. Угловая и механическая характеристики
- •Регулирование коэффициента мощности
- •Достоинства и недостатки синхронных двигателей
- •Лекция 26 машины постоянного тока Принцип работы и устройство машин постоянного тока
- •Электродвижущая сила и электромагнитный момент машины постоянного тока
- •Лекция 27 Реакция якоря
- •Коммутация машин постоянного тока
- •Генератор постоянного тока с независимым возбуждением
- •Генераторы постоянного тока с самовозбуждением
- •Лекция 28 Типы возбуждения и механические характеристики двигателей постоянного тока
- •ППуск двигателей постоянного тока
- •Регулирование частоты вращения двигателя постоянного тока
- •Торможение двигателей постоянного тока
- •Рабочие характеристики двигателя постоянного тока
- •Лекция 29 основы электропривода Электропривод и его классификация
- •Механические характеристики производственных механизмов и эд
- •Нагревание и охлаждение двигателя
- •Лекция 30 выбор электродвигателя
- •Нагрузочные диаграммы и номинальные режимы электродвигательного устройства
- •Расчет мощности двигателя
- •Лекция 32 управление электроприводом
- •Основы электроснабжения
- •Категории электроприемников и их электроснабжение
- •Содержание и порядок разработки проекта системы электроснабжения
- •Определение установленной мощности понизительной трансформаторной подстанции Расчетная максимальная мощность трансформаторной подстанции
- •Коэффициенты спроса и мощности основных электроустановок
- •Средневзвешенный коэффициент мощности и мощность компенсатора
- •Минимальное количество трансформаторов и установленная номинальная мощность понизительных трансформаторных подстанций
- •Понятия об учете и нормировании электроэнергии Учет электрической энергии
- •Системы оплаты электрической энергии
- •Общезаводские нормы расхода электроэнергии (фрагмент)
- •Лекция 34 коэффициент мощности действующей электроустановки и способы его улучшения
- •Понятия о центре электрических нагрузок и выборе места расположения понизительных трансформаторных подстанций
- •Расчет установленной мощности понизительной трансформаторной подстанции и исследование технико-экономических показателей ее трансформаторов в естественных и искусственных условиях
- •Суммарные нагрузки на птп
- •Алгоритм исследования
- •Расчетные нагрузки на трансформатор птп
- •Выводы и обобщения
- •Литература
Лекция 4
источнике питания =
IL
e –j
90. Мощность цепи S
= QL=
XLIL2
, P = 0. Коэффициент
мощности cos φ
= 0 , φ = + 90º.
,
.
Комплексное сопротивление цепи
,
XL
= 2πƒL, R = 0, φ =
arctg(XL/R)
= 90˚, XL/0
= ∞, arctg ∞ = 90°.
Ток цепи İL=
/Z
L =
Ue j
0/XLe+j
90˚ = (U/XL)
e –j
90˚ =
Трансформаторы, электрические двигатели, дроссели, кроме активного сопротивления обладают индуктивным сопротивлением. Индуктивностью обладают все проводники с током. В ряде случаев она мала и ею пренебрегают, но значительна там, где обмотки катушек состоят из большого числа витков провода.
Индуктивность возрастает, если магнитный поток замыкается по пути с малым магнитным сопротивлением (например, по стальному сердечнику).
Рассмотрим идеальную катушку с постоянной индуктивностью L, у которой активное сопротивление равно 0.
Электрическая цепь с индуктивным элементом
Пусть к цепи с приложено напряжение u = Umахsinωt. Под действием напряжения в цепи возникает ток i, который создает магнитный поток Ф. Согласно закону электромагнитной индукции магнитный поток Ф индуцирует в катушке ЭДС самоиндукции
еL = -wdФ/dt = -Ldi/dt,
где w - число витков катушки.
Знак «минус» согласно принципу электромагнитной индукции (закон Ленца) указывает на то, что еL всегда имеет такое направление, при котором она препятствует изменению магнитного потока или тока в цепи.
На рисунке показаны условные положительные направления напряжения u, тока i, ЭДС самоиндукции eL на элементе с индуктивностью L. Условное положительное направление ЭДС еL выбирают из условия, что ее действительное направление в любой момент времени противоположно напряжению на катушке uL.
По II ЗК имеем u - uL = 0, а с учетом того, что uL = - еL, получаем
u = eL = 0
Тогда
Umах sinωt – Ldi/dt = 0, или di/dt = Umахsinωt/L.
При решении этого уравнения получаем выражение для тока в цепи
i = (Umах/L)sinωtdt = - Umахcosωt/ωL = Umахsin - π/2)/ωL =
= Imахsin(ωt - π/2).
Таким образом, в цепи с индуктивностью ток отстает от напряжения на угол π/2 и изменяется по синусоидальному закону.
Величина ωL имеет размерность сопротивления, Гн/с = В·с/А·с = = Ом.
Это индуктивное сопротивление
XL = ωL = 2πfL.
Индуктивное сопротивление прямо пропорционально частоте и индуктивности.
Тогда
Imах= Umах/XL, или I = U /XL.
Так как ЭДС самоиндукции численно равна напряжению на элементе с индуктивностью, то
XLI = U = ЕL
Следовательно, индуктивное сопротивление является коэффициентом пропорциональности между током i и ЭДС самоиндукции eL.
Запишем комплексные напряжение и ток цепи
= Ue j0, ψu = 0o;
İ = Ie -j90, ψi = - 90o.
Сдвиг по фазе между напряжением и током
φ = 0° – (-90° ) = +90o
Комплексное сопротивление цепи
Z = /İ = Ue j0/Ie -j90 = XLej90 = jXL.
Таким образом, комплексное сопротивление цепи с L-элементом равно положительному мнимому числу.
Модуль комплексного сопротивления
Z = XL
Мощность цепи с L-элементом
P = ui = Umахsinωt - Imахsin(ωt-90°) = -UIsin2ωt.
т. е. мгновенная мощность имеет только переменную составляющую. В первую и третью части периода ток направлен от цепи к источнику питания, а во вторую и четвертую – от источника питания к цепи. Таким образом, через четверть периода мощность меняет знак. Такая энергия обмена энергией между источником и приемником, которая не преобразуется в другие виды энергии, называется реактивной. Интенсивность обмена энергией характеризуется реактивной мощностью QL = UI, равной амплитуде мгновенного по направлению с ЭДС самоиндукции, мощность отрицательна и энергия передается от катушки к источнику питания, а во вторую и четвертую четверти периода энергия запасается в магнитном поле катушки.
Выразим полную мощность цепи в комплексной форме
S = = Sejφ = UIcos90° + jUIsin90° = jUI
QL = UI = XLI2,
где QL – реактивная мощность цепи (вар, квар, мвар).
Полная мощность цепи с L-элементом равна реактивной мощности.
Векторная, временная диаграммы цепи с идеальной индуктивностью а также изменение мощности представлены на рисунках.
Временная диаграмма Векторная диаграмма
цепи с L-элементом с L- элементом