Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Тема 03.doc
Скачиваний:
28
Добавлен:
17.12.2018
Размер:
806.91 Кб
Скачать

ТЕМА № 3. ИОНИЗИРУЮЩИЕ ИЗЛУЧЕНИЯ, ИХ ХАРАКТЕРИСТИКИ И ВЗАИМОДЕЙСТВИЕ С ВЕЩЕСТВОМ. ИСТОЧНИКИ ИЗЛУЧЕНИЙ

Ионизирующие излучения, их характеристики

1. Виды и характеристики ионизирующих излучений. Взаимодействие ионизирующих излучений с веществом.

2. Основные дозиметрические величины и единицы их измерения. Связь между дозами

.

Широкое использование радионуклидов в медицине, науке и технике вовлекло человечество и весь живой мир в сферу контактов с ионизирующими излучениями.

Любое излучение, взаимодействие которого со средой приводит к образованию электрически заряженных частиц, называется ионизирующим. Излучения отличаются по проникающей и ионизирующей способности. Ионизирующая способность излучения обусловлена ионизацией атомов и молекул в результате взаимодействия частиц со средой. Проникающая способность – это проникновение ионизирующих излучений в массу вещества на некоторую глубину

Ионизирующее излучение – излучение, которое образуется при радиоактивном распаде, ядерных превращениях, торможении заряженных частиц в веществе и образует при взаимодействии со средой ионы разных знаков. Ионизирующее излучение не воспринимается органами чувств: мы его не видим и не слышим, не ощущаем воздействия на наши тела. Ионизирующие излучения разделяют на электромагнитное и корпускулярное.

К электромагнитным (фотонным) относят рентгеновское и гамма-излучения, которые представляют собой поток электромагнитной энергии с разной (преимущественно короткой) длиной волны. Солнце является природным источником ультрафиолетового и рентгеновского излучения. Рентгеновское излучение поглощается земной атмосферой, если бы этого не происходило, то оно бы губительно действовало бы на все живое на Земле.

Корпускулярное ионизирующее излучение – поток элементарных частиц, образующихся при радиоактивном распаде, ядерных превращениях, либо генерируемых на ускорителях. К нему относятся: бета-частицы (электроны и позитроны), нейтроны, протоны и альфа-частицы (ядра атома гелия).

К ионизирующим относятся также космические излучения, которые приходят на Землю из космического пространства.

Воздействие ионизирующих излучений на вещества называется облучением.

За единицу энергии радиоактивных излучений принят электронвольт (эВ). Электрон вольт–это энергия, которую приобретает электрон, проходя в электрическом поле разность потенциалов, равную одному вольту.

Гамма-кванты, альфа- и бета-частицы при распространении в разных средах взаимодействуют с атомами и молекулами вещества, могут передавать последним часть своей энергии и менять направление движения. Атомы и молекулы, получившие избыток энергии, в процессе столкновения переходят в возбужденное состояние. При этом может происходить ионизация атомов или молекул (отрыв электронов), а молекулы могут и диссоциировать на ионы. Для ионизации большинства химических веществ, которые входят в состав биологических объектов, необходима энергия порядка 10 эВ.

Ионизирующая способность излучения определяется удельной ионизацией, т.е. числом пар ионов, создаваемых частицей в единице объема, массы среды или на единице длины пути. Энергия, необходимая на образование одной пары ионов, называется потенциалом ионизации данного вещества, или средней энергией ионообразования. Например, потенциал ионизации воздуха составляет в среднем 34 эВ. Если энергия излучения, которая передается атому или молекуле, меньше, чем потенциал ионизации вещества, то происходит возбуждение атома без образования ионов.

Число пар ионов, которые образованы в среде гамма-квантом или частицей на единице длины своего пути, называется линейной плотностью ионизации. При каждом акте взаимодействия частица теряет часть своей энергии и затормаживается, ее скорость уменьшается до того момента, пока не станет равной скорости теплового движения.

Проникающая способность излучений определяется величиной пробега. Пробегом называется путь, пройденный частицей в веществе до ее полной остановки, обусловленной тем или иным видом взаимодействия.

1.1. Альфа-излучения

Альфа-излучения – это поток частиц, являющихся ядрами атома гелия (He) и обладающими двумя единицами заряда. Масса альфа-частицы m = 6,6410-27 кг и заряд q = 3,20410-19 Кл. Радиоактивное превращение атомного ядра, сопровождающееся вылетом из него альфа-частиц, называется альфа-распадом.

Альфа-распад может быть выражен следующим соотношением:

.

Зарядовое число Z распадающегося ядра при альфа-распаде уменьшается на две единицы, массовое число A – на четыре единицы. Примером альфа-распада может служить радиоактивное превращение Pu с испусканием альфа-частиц различных энергий (5,11; 5,14; 5,16 МэВ)и гамма-квантов (0,02; 0,05 МэВ). Гамма-кванты испускаются дочерними ядрами U-235 находящимися в возбужденном состоянии.

.

Основными источниками альфа-излучения являются естественные радиоактивные изотопы, многие из которых испускают при распаде альфа-частицы с энергией в пределах от 2 до 8,8МэВ. При этом все ядра одних радионуклидов испускают альфа-частицы, обладающие одной и той же энергией. Это моноэнергетические излучатели, например U (4,5 МэВ), Po (6,78 МэВ). Ядра других элементов испускают альфа-частицы различных энергий, так, например, при распаде U примерно 10 % альфа-частиц имеют энергию 4,58 МэВ, 86 % – 4,40 МэВ и 4 % – 4,18 МэВ. Энергия гамма-квантов, испускаемых дочерними (возбужденными) ядрами после альфа-распада, обычно не превышает 0,5 МэВ.

Альфа-частицы обладают наиболее высокой ионизирующей способностью и наименьшей проникающей способностью. Их удельная ионизация – линейная плотность ионизации – изменяется от 25 до 60 тыс. пар ионов на 1 см пути в воздухе. На образование одной пары ионов требуется около 34 эВ. Длина пробега этих частиц в воздухе при нормальных условиях – от 2,5 до 8,6 см; в биологических средах – не превышает 70 мкм.

Длина пробега частиц зависит от энергии. Разные группы альфа-частиц, даже испускаемые одним и тем же радиоактивным ядром, могут иметь различные энергии и, следовательно, различные длины пробега. Скорости движения альфа-частиц в воздухе в зависимости от энергии находятся в интервале от 14000 до 22500 км/с.

Длина пробега R (см) в воздухе альфа-частиц с энергией от 3 до 8 МэВ может быть вычислена по экспериментальной формуле Гейгера

. (3.1)

Пробег альфа-частиц в веществах, отличающихся от воздуха, находят по формуле Брега

, (3.2)

где E – энергия альфа-частиц, МэВ; Аm – массовое число вещества;  – плотность вещества, г/см3.

Взаимодействие альфа-частицы с веществом проявляется во взаимном отталкивании с положительно заряженными ядрами и притяжении с отрицательно заряженными электронами атомов. Взаимодействие с ядрами не играет существенной роли, т.к. ядер в веществе значительно меньше, чем электронов. Кинетическая энергия альфа-частиц при их прохождении через вещество затрачивается главным образом на возбуждение и ионизацию атомов среды и диссоциацию молекул.

Когда альфа-частица окончательно израсходует весь свой запас кинетической энергии, то присоединяет к себе два электрона и превращается в нейтральный атом гелия.

Кожа человека задерживает полностью альфа-частицы. Для исключения ожога кожи, при работе с источниками альфа-излучения используют защитные резиновые перчатки. Альфа-частицы полностью поглощаются одеждой. Однако при попадании альфа-частиц внутрь организма (с воздухом, пищей, водой или через открытую рану ) из-за сильной ионизирующей способности они становятся очень опасными и вызывают в местах контакта необратимые повреждения биологической ткани.

Известно около 300 альфа-активных радионуклидов, из них 40 являются природными. В числе природных, наиболее значимых альфа-излучателей, встречаются изотопы урана , , Ra, Th, Po, Ru, Rb. В результате аварии на ЧАЭС выброшены искусственные альфа-излучатели: изотопы плутония Pu, Pu, Pu, Pu.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]